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ABSTRACT

My dissertation considers solving of linear programming problems with p-order

conic constraints that are related to a class of stochastic optimization models with

risk objective or constraints that involve higher moments of loss distributions. The

general proposed approach is based on construction of polyhedral approximations for

p-order cones, thereby approximating the non-linear convex p-order conic program-

ming problems using linear programming models. It is shown that the resulting LP

problems possess a special structure that makes them amenable to efficient decom-

position techniques. The developed algorithms are tested on the example of portfolio

optimization problem with higher moment coherent risk measures that reduces to a p-

order conic programming problem. The conducted case studies on real financial data

demonstrate that the proposed computational techniques compare favorably against a

number of benchmark methods, including second-order conic programming methods.
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CHAPTER 1

RISK-AVERSE OPTIMIZATION BASED ON COHERENT RISK
MEASURES

1.1 Introduction

Stochastic optimization is concerned with selecting an optimal decision vector,

x ∈ Rn under uncertainties, when the outcome X of the decision x also depends on

some random event ω ∈ Ω: X = X(x, ω). Assuming that smaller values of X are

preferred, or, in other words, X represents a cost or loss due to the decision x, a

traditional formulation of a stochastic programming problem involves minimization

of the expected cost of x:

min
x∈S

E
[
X(x, ω)

]
, (1.1)

where, for simplicity it can be assumed that the feasible set S in (1.1) is deterministic,

i.e., does not depend on the random element ω. In many situations, however, a

decision that minimizes the expected loss or is otherwise based on the average outcome

may not be satisfactory, and a more conservative, or risk-averse decision strategy

may be preferred. A variety of approaches and techniques for implementing risk-

averse preferences in stochastic programming, and in decision-making problems under

uncertainty in general, have been developed in the literature. Below we present a brief

overview of some of these techniques, not pretending to be exhausting.

In particular, we focus our attention on the so-called risk measures, which are

most closely related to the stochastic optimization models with p-order conic con-

straints that constitute the primary subject of this work.
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Analysis and modeling of decision-maker’s preferences, including risk prefer-

ences, have been actively studied in financial literature, specifically in the context

of portfolio optimization. From the historical and methodological prospective, risk

measures relate to the risk-reward optimization paradigm that has developed from

the seminal works of Markowitz (1952, 1959), and complements another classical ap-

proach to decision-making under uncertainty, the utility theory of von Neumann and

Morgenstern (1944).

In this section, we will look at the major developments in risk measurements.

Starting with the work of Markowitz, we will discuss the various aspects of how

the field has changed as we progress to higher moment coherent risk measures. We

will look at examples from Downside Risk measures, Value-at-Risk and Conditional

Value-at-Risk, and finally Coherent Risk Measures. We will also discuss the strength

and weaknesses of these different risk measures with regard to portfolio optimization.

1.2 Risk Measures in Decision Making Under
Uncertainty and Stochastic Optimization

1.2.1 Markowitz Mean-Variance (MV) Model

Initially, maximization of portfolio instruments was based on maximization of

expected return. As the field progressed, the use of risk (regret) and reward (satis-

faction) based on an investor’s preferences (risk-averse nature) has been the driving

force behind much of the modern day research. The measure of reward that is most

commonly associated with an investment portfolio is widely accepted to be the ex-

pected return. The measure of risk, however, is something that is still being debated

and is an area of active research.

The modern theory of risk management was given its initial foundation back
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in 1952 by Markowitz (1952). In this landmark paper, Markowitz suggested that

investment’s or portfolio’s risk can be identified with the volatility, or, more techni-

cally, variance of the cumulative return of a portfolio’s assets. Defined in such a way,

risk can be minimized while ensuring that the portfolio still guarantees some level of

performance, measured by the expected return of the portfolio’s assets.

On a more fundamental level, the Markowitz model proposed an approach to

decision making under uncertainty markedly different from the prevailing framework

of utility theory, which advocated that a rational decision under uncertainty is the

one that maximizes the expected utility. Namely, the Markowitz paradigm postulates

that any decision under uncertainties can be viewed as a tradeoff between the risk and

reward.

The standard Markowitz mean-variance portfolio optimization model in ap-

plication to portfolio optimization can be formulated as follows. Consider a set of

instruments, {1, . . . , n} that are characterized by random rates of return ri = ri(ω),

i = 1, . . . , n. Given an investment vector x = (x1, . . . , xn), where xi ∈ [0, 1] repre-

sents the proportion of one’s wealth invested in asset i = 1, . . . , n, the cumulative

portfolio’s return X has the form

X(x, r(ω)) =
n∑
i=1

xiri(ω) = x>r(ω)

According to the original Markowitz model (Markowitz, 1952), an optimal portfolio

allocation decision x minimizes the investment risk, embodied by the variance of X,
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while ensuring that the expected portfolio’s return exceeds some prescribed level r0:

min
n∑
i=1

n∑
j=1

σijxixj

s. t.
n∑
i=1

xiE(ri) ≥ r0

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n

(1.2)

The objective function of (1.2) is equal to the variance σ2(X) of portfolio return:

σ2(X) = E
[
(X − E[X])2

]
=

n∑
i=1

n∑
j=1

σijxixj,

where σij is the covariance of the returns ri and rj of assets i and j:

σij = Cov(ri, rj) = E
[
(ri − E[ri])(rj − E[rj])

]
The first constraint of (1.2) stipulates that the expected return E[X] = E[r>x] of the

portfolio does not fall below certain level r0, while the second and third constraints

ensure that the entire available wealth is invested in the portfolio.

Observe that (1.2) is a quadratic programming problem that is moreover convex,

due to the fact that the covariance matrix {σij}i,j=1,...,n is positive semidefinite.

In general, the Markowitz MV model can be stated using the notations adopted

above as the problem of minimization of risk expressed by the variance of decision’s

cost σ2(X(x, ω)) while requiring that the average cost of the decision does not exceed

a predefined threshold c0:

min
x
{σ2(X(x, ω)) | E(X(x, ω)) ≤ c0, x ∈ C} (1.3)
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where C ⊂ Rn is the set of feasible decisions x.

Although the original Markowitz’s approach is still widely used today, there

have been numerous criticisms of the model – specifically its inability to distinguish

the risks of a “good”, or “positive” deviation from a bad or negative deviation from

the average. In other words, the variance σ2(X) as a proxy for risk penalizes equally

the “desirable” instances when X > E[X] and “undesirable” cases when X < E[X]

(assuming here that X represents, for instance, portfolio return).

This inability to reward a decision for a positive change in the return led to the

development of the so-called downside risk models that can replace the symmetric

variance functional σ2(X) in problem (1.3). Next we outline the most notable devel-

opments in this area, including the semivariance risk models, lower partial moments,

Value-at-Risk, etc.

1.2.2 Semivariance Risk

The shortcomings of variance σ2(X) as a risk measure has been recognized as

far back as by Markowitz himself, who proposed to use semi-variance σ2
+(X) for a

more accurate estimation of risk exposure (Markowitz, 1959):

σ2
+(X) = E

[
(X − E[X])2

+

]
(1.4)

where (X)± denotes the positive (negative) part of X:

(X)± = max{0,±X}

Note that here and in what follows, we present risk models and concepts in the form

that implicitly assumes that X represents a cost or loss, and whose large positive

values must be avoided. An alternative view, often found in the literature, regards X
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as a wealth variable, whereby the relevant definition of semivariance as a risk function

would take the form that only takes into account the situations when the value of

X = X(ω) drops below its expected level E[X]:

σ2
−(X) = E

[
(X − E[X])2

−
]

Application of semivariance risk models to decision making under uncertainty has

recently been studied by Ogryczak and Ruszczyński (1999, 2001, 2002).

A drawback of the semivariance approach is that risk is quantified through the

shortfalls from the expected level. In many situations, a decision maker may be

interested to regard risk as shortfall from a certain benchmark level. This led to the

development of a number of approaches to the measurement and optimization of risk

which discussed next.

1.2.3 Downside Risk Measures

The transition from the classical Markowitz MV model (1.2)–(1.3) to semivari-

ance risk model was a natural extension of the fact that the MV model penalized

for both positive and negative variation in the portfolio’s return. The next family of

risk models have been motivated by practical considerations, when investors would

set up a certain benchmark level of wealth, a, and associate the investment’s risk

with underachievement, or shortfall of this goal. Then, for instance, it is convenient

to consider the risk of the decision X as the average shortfall with respect to the

benchmark level a:

ER(X) = E(X − a)+ (1.5)
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The risk function defined in (1.5) is known in the literature as Expected Regret (Dembo

and Rosen, 1999). A generalization of (1.5) is the so-called Lower Partial Moment

function (see Bawa, 1975; Fishburn, 1977):

LPMp(X, a) = E((X − a)+)p, p ≥ 1, a ∈ R (1.6)

where we again note that X represent a cost or a loss, and thus its “positive” shortfall

(X − a)+ is of interest.

A requirement that the risk when measured by the lower partial moment func-

tion LPMp(X, a) should not exceed some level b > 0 can be expressed as a risk

constraint of the form

E[(X − a)p+] ≤ b

In the special case of p = 1 the above constraint reduces to the form

E[(X − a)+] ≤ b (1.7)

which is known as Integrated Chance Constraints (ICC) (Testuri and Uryasev, 2003;

van der Vlerk, 2003). The Integrated Chance Constraints have been proposed as a

computationally efficient alternative to chance, or probabilistic constraints (Prékopa,

1995; Birge and Louveaux, 1997)

P{X(x, ω) ≥ a} ≤ α, α ∈ (0, 1) (1.8)

Probabilistic constraints are extremely popular in a wide spectrum of disciplines, from

finance to reliability theory, due to their intuitive interpretation: (1.8) defines the set

of such x ∈ Rn for which the probability of the decision cost X(x, ω) exceeding some

prescribed level a is no more than α.
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Despite this transparent interpretation, chance constraints (1.8) have rather

poor properties from the mathematical programming viewpoint as they are generally

non-convex. In the field of financial risk management, the chance constraints are

directly related to the well-known Value-at-Risk measure that is discussed next.

1.2.4 Value-at-Risk Measure

Perhaps the most famous risk measure in the area of financial risk management

is the Value-at-Risk (VaR) measure (see, for instance, Morgan, 1994; Jorion, 1997;

Duffie and Pan, 1997, and references therein). Methodologically, if X represents the

potential financial loss, then, for instance, its 0.95% VaR (VaR0.95(X)) defines the

risk of X as as the amount that can be lost with probability no more than 5%, over

a given time horizon (e.g., 1 week). Mathematically, Value-at-Risk with confidence

level α is defined as the α-quantile of the probability distribution of X (see, e.g.,

Rockafellar and Uryasev, 2002b):

VaRα(X) = inf{ζ | P [X ≤ ζ] ≥ α} (1.9)

From the above definition it easy to see that probabilistic constraint (1.8) can be

expressed as a constraint on the Value-at-Risk of −X(x, ω):

VaRα(−X(x, ω)) ≤ −a

Currently VaR is widely adopted by the banking and financial industry and it still

remains a risk measure that is used to this day by a number of firms that do risk

modeling including Cargill’s Risk Analysis Department.

The VaR measure, despite the easy-to-interpret definition, turned out to have
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a number of modeling and implementation issues. This is mainly due to VaR’s non-

convexity as a function of the decision variables. This is a serious limitation, not

only in the context of mathematical programming, where convexity guarantees well-

behaved models, but also from the risk-management prospective, since it violates the

fundamental principle of risk reduction by diversification. It is a well-known fact that

diversification enables one to reduce the risk of investment loss. However, when risk

is measured using VaR, it is possible that diversification may increase VaR, instead

of reducing it!

These limitations led to the development of a better-behaved alternative to VaR,

which is now known as the Conditional Value-at-Risk (CVaR) measure.

1.2.5 Conditional Value-at-Risk (CVaR)

The Conditional Value-at-Risk measure has been designed as a risk measure

that would remedy the shortcomings of VaR while preserving its intuitive practical

meaning. For random cost or loss X that has a continuous distribution, Rockafellar

and Uryasev (2000) have defined CVaR with confidence level α as the conditional

expectation of losses X exceeding the VaRα level:

CVaRα(X) = E[X | X ≥ VaRα(X)] (1.10)

In accordance with this definition, for example, the 95% Conditional Value-at-Risk is

defined as the average of 5% of worst-case losses, or the average loss that can occur

in 5% of worst-case scenarios.

In contrast to VaR, Conditional Value-at-Risk possesses superior mathematical

properties, including, but not limited to, convexity and continuity with respect to the

confidence level α, etc.
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It is important to note that in the case of discretely distributed X, definition

(1.10) does not guarantee convexity of CVaR with respect to X. Thus, to preserve

the nice properties of CVaR in the case of general loss distributions, a more intricate

definition of CVaR has been introduced in Rockafellar and Uryasev (2002a), which

presents CVaRα(X) as a convex combination of VaRα(X) and conditional expectation

of losses strictly exceeding the VaRα(X) level:

CVaRα(X) = λα(X)VaRα(X) + (1− λα(X))E[X | X > VaRα(X)] (1.11)

Despite such a seemingly complex definition, computation and minimization of CVaR

can be accomplished very efficiently using the following formula due to Rockafellar

and Uryasev (2000, 2002a):

CVaRα(X) = min
η∈R

η + (1− α)−1E(X − η)+, 0 < α < 1 (1.12)

Moreover, it turns out that the set of optimal solutions η∗ that deliver minimum to

(1.12) contains VaRα(X) as its left-hand point! In other words, one can compute

both VaRα(X) and CVaRα(X) in one shot using the representation (1.12).

The last representation is a special case of a more general representation of an

entire class of risk measures that have nice properties similar to CVaR, the so-called

Coherent Risk Measures, that we discuss below. It is also worth mentioning that there

are other risk measures that are similar to CVaR in construction or may coincide with

it in certain cases (Conditional Drawdown-at-Risk (Chekhlov et al., 2005; Krokhmal

et al., 2002b), Expected Shortfall and Tail VaR Acerbi and Tasche (2002), etc).
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1.3 Coherent Measures of Risk

Historically, development of risk models used in the Markowitz risk-reward

framework has been application-driven, or “ad-hoc” to a large degree, meaning that

new risk models have been designed in an attempt to represent particular risk pref-

erences or attitudes in decision making under uncertainty. As a result, some risk

models, while possessing certain attractive properties have been lacking some seem-

ingly fundamental features, which undermined their applicability in many problems.

The most famous example of this is the Value-at-Risk measure, which has been heav-

ily criticized by both academician and practitioners for its lack of convexity and other

shortcomings.

Thus, an entirely different “axiomatic” approach to the construction of risk

models has been proposed by Artzner et al. (1999), who undertook the task of deter-

mining the set of requirements, or axioms that a “good” risk function must satisfy.

From a number of such potential requirements they identified four, and called the

functionals that satisfied these four requirements coherent measures of risk. Since

the pioneering work of Artzner et al. (1999), the axiomatic approach has become the

dominant method in risk analysis, and a number of new classes of risk measures, tai-

lored to specific preferences and applications, have been developed in the literature.

Examples of such risk measures include deviation measures (Rockafellar et al., 2006),

spectral risk measures (Acerbi, 2002), and others.

In the the formal axiomatic framework of risk analysis, a risk measure R(X)

of a random outcome X is defined as a functional R : X 7→ R, where X is some

functional space. For a discussion of risk measures on general spaces see, for example,

Ruszczyński and Shapiro (2006); in this work we select X to be the well-known Lp
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space defined on probability space (Ω,F , P )

X = Lp(Ω,F , P ), p ≥ 1

where Ω is the set of random events, F is the corresponding sigma algebra, and P

is the probability measure. In practice this would mean that our analysis applies to

all random outcomes X = X(x, ω), ω ∈ Ω, of the decision x ∈ Rn that have finite

moments of order p:

E|X(x, ω)|p <∞.

Then, a coherent risk measure is defined as a functional R : X 7→ R that satisfies the

following four axioms (Artzner et al. (1999); Delbaen (2002)):

(A1) monotonicity : X ≤ 0⇒ R(X) ≤ 0, ∀X ∈ X ,

(A2) convexity : R(λX + (1− λ)Y ) ≤ λR(X) + (1− λ)R(Y ),∀X, Y ∈ X , 0 ≤ λ ≤ 1

(A3) positive homogeneity : R(λX) = λR(X), ∀X ∈ X , λ > 0,

(A4) translation invariance: R(X + a) = R(X) + a, ∀X ∈ X , a ∈ R

Let us now briefly recount the meaning of each axiom. The monotonicity axiom

(A1) generally means that larger realizations of X bear more risk (see also property

(P2) below).

The convexity axiom (A2) is a key property from both the methodological and

computational perspectives. In the mathematical programming context, it means that

R(X(x, ω)) is a convex function of the decision vector x whenever the cost X(x, ω)

is convex in x. This, in turn, entails that the minimization of risk over a convex

set of decisions x constitutes a convex programming problem, which is amenable
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to efficient solution procedures. Moreover, convexity of coherent risk measures has

important implications from the methodological risk management viewpoint: given

the positive homogeneity (A3), convexity implies sub-additivity

(A2′) R(X + Y ) ≤ R(X) + R(Y ) for all X, Y ∈ X (sub-additivity)

which is a mathematical expression of the fundamental risk management principle of

risk reduction via diversification.

The positive homogeneity axiom (A3) ensures that if all realizations of X in-

crease or decrease uniformly by a positive factor, the corresponding risk R(X) scales

accordingly. In some applications, such a behavior of R may not be desirable, and a

number of authors dropped the positive homogeneity from the list of required prop-

erties of risk measures (see, e.g., Schied and Follmer, 2002; Ruszczyński and Shapiro,

2006).

Finally, the translation invariance axiom (A4) implies that addition of a constant

term to the cost or loss profile X changes its risk by the same amount.

The following useful properties of coherent risk measures can be derived from

the fundamental axioms (A1)–(A4), see Delbaen (2002) and Ruszczyński and Shapiro

(2006):

(P1) R(0) = 0, and, in general, R(a) = a, ∀a ∈ R

(P2) X ≤ Y ⇒ R(X) ≤ R(Y ), and, in particular, X ≤ a⇒ R(X) ≤ a,∀a ∈ R

(P3) R(X −R(X)) = 0

(P4) if X is a Banach lattice then R(X) is continuous in the interior of its effective

domain.
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Note that here and throughout the text the inequalities of the form

X ≥ a, X ≤ Y

are assumed to hold almost surely. In other words, the above expressions are equiva-

lent to

P{X ≥ a} = 1, P{X ≤ Y } = 1

respectively.

Next we discuss several examples of coherent and non-coherent risk measures.

Example 1. Expected value of random variable R(X) = E[X] is a coherent mea-

sure of risk. Indeed, the fact that R(X) = E[X] satisfies properties (A1)–(A4) follows

directly from the elementary statistical properties of the expectation operator.

Example 2. The so-called Maximum Loss measure:

MaxLoss(X) = supX

which associates the risk of X with the largest value that X can assume, is a coherent

measure of risk

Example 3. Conditional Value-at-Risk (CVaR) measure as defined by (1.11) is a

coherent measure of risk. The definition (1.10)

Example 4. Variance R(X) = σ2(X) is not coherent as it is evident that despite

being convex (A2), it fails axioms (A1), (A3), and (A4).

Example 5. Value-at-Risk measure R(X) = VaRα(X) is not a coherent measure

of risk. Although it satisfies (A1), (A3), and (A4), VaRα(X) fails the all-important

convexity property (A2).
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What makes the class of coherent risk measures particularly appealing for mod-

eling of risk-averse preferences in stochastic optimization problems is the fact that

the expectation operator E[X] satisfies (A1)–(A4) and is therefore a coherent risk

measure itself. Furthermore, properties (A1)–(A4) play a pivotal role in determining

the characteristics of stochastic optimization problems of type (1.1) and the corre-

sponding solution algorithms (see, e.g., Birge and Louveaux, 1997; Prékopa, 1995).

This opens possibilities for implementing risk averse preferences in many stochastic

optimization models simply by replacing E[·] with an appropriately selected coherent

risk measure R(·). Note, however, that success of such an approach would ultimately

depend on the particular form of R, and its amenability to efficient incorporation

in mathematical programming models. Next we discuss two classes of coherent risk

measures that involve higher-order moments of loss distributions, and whose imple-

mentation in mathematical programming problems constitutes the objective of the

present endeavor.

1.3.1 Higher Moment Coherent Risk Measures

Constructive representations for coherent measures of risk that can be efficiently

applied in stochastic optimization context have been proposed in (Krokhmal, 2007):

R(X) = inf
η
η + φ(X − η) (1.13)

(similar constructs have been investigated by Ben-Tal and Teboulle, 2007, see also

Ben-Tal and Teboulle, 1986). Formally, the following result holds:

Theorem 1.3.1 (Krokhmal (2007)). Let function φ : X 7→ R satisfy axioms (A1)-

(A3) and be a lower semicontinuous (lsc) function such that φ(η) > η, ∀η ∈ R,

η 6= 0. Then the optimal value of the stochastic programming problem (1.13) is a
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proper coherent risk measure, and the infimum is attained for all X, so inf
η

in (1)

may be replaced by min
η∈R

.

A family of coherent risk measures that quantify risk in terms of tail moments

of loss distributions was then introduced as a special case of (1.13). Namely, let

X = Lp(Ω,F , P ), and for some 0 < α < 1 choose the functional φ in (1.13) as

φ(X) = (1− α)−1‖(X)+‖p,

where ‖X‖p = (E|X|p)1/p. It is clear that φ satisfies the conditions of Theorem 1.3.1.

Then, a class of higher moment coherent risk measures (HMCR) that quantify risk in

terms of tail moments of loss distributions is introduced as

HMCRp,α(X) = min
η∈R

η + (1− α)−1‖(X − η)+‖p, p ≥ 1, α ∈ (0, 1) (1.14)

From the definition of ‖X‖p it is clear that ‖X‖p < ‖X‖q for 1 ≤ p < q. Thus, the

class of HMCR measures are monotonic with respect to the order of p:

HMCRp,α(X) ≤ HMCRq,α(X) for p < q and X ∈ Lq

Risk measures similar to (1.14) on more general spaces have been been discussed

independently by Cheridito and Li (2007). The HMCR family contains, as a special

case of p = 1, the aforementioned Conditional Value-at-Risk measure (Rockafellar

and Uryasev, 2000, 2002b).

The importance of HMCR measures is in measuring the “mass” in the right-

hand tail of loss distribution via the tail moments ‖(X − η)+‖p. It is widely acknowl-

edged that the “risk” is associated with higher moments of the loss distributions (e.g.,

“fat tails” are attributable to high kurtosis, etc). However, the HMCR measures are
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not the only coherent risk measures that quantify risk in terms of higher moments of

loss distributions.

1.3.2 Semi-Moment Coherent Risk Measures (SMCR)

Another family of coherent measures of risk that employ higher moments of loss

distributions has been considered by Fischer (2003) and Rockafellar et al. (2006):

SMCRp,β(X) = EX + β
∥∥(X − EX)+

∥∥
p
, p ≥ 1, β ≥ 0. (1.15)

We call (1.15) the semi-moment coherent risk measures (SMCR) as, similarly to

semivariance, they are based on central semi-moments of loss distributions.

In contrast to SMCR measures (1.15), the HMCR measures (1.14) are tail risk

measures. By this we mean that in (1.15) the “tail cutoff” point, about which the

partial moments are computed, is always fixed at E[X], whereas in (1.14) the location

of tail cutoff is determined by

ηp,α(X) = left end point of arg min
η

{
η + (1− α)−1

∥∥(X − η)+
∥∥
p

}
and is adjustable by means of the parameter α. Further, it can be verified that

0 < α1 < α2 < 1 implies

ηp,α1(X) ≤ ηp,α2(X)

and, in addition, one has

ηp,α(X)→ supX as α→ 1

(see Krokhmal, 2007).



www.manaraa.com

18

As it is shown below, the HMCR measures (1.14) and the semi-moment based

coherent risk measures (1.15) can be treated very similarly from the mathematical

programming perspective.

1.3.3 Connection to Utility Theory

In general, coherent risk measures are inconsistent with the utility of von Neu-

mann and Morgenstern (1944), in the sense that the minimum-risk solution as ob-

tained by minimizing risk using a coherent risk measure may not be attractive to a

rational utility maximizer (see an example in Giorgi, 2005).

Recall that the von Neumann-Morgenstern theory of utility (von Neumann and

Morgenstern, 1944) states that given a person’s preference relation, ”�” that satisfies

the axioms of completeness, transitivity, continuity and independence, there exists a

function u : R 7→ R, such that an outcome X is preferred to outcome Y (X � Y ) if

and only if E[u(X)] ≥ E[u(Y )]. If additionally, the function u is non-decreasing and

concave, the corresponding preference is said to be risk averse.

It is possible to introduce risk measures that will be consistent with the utility

theory by means of the second-order stochastic dominance (SSD) ordering. Namely, a

random outcome X dominates outcome Y by the second-order stochastic dominance

if

∫ z

−∞
P [X ≤ t]dt ≤

∫ z

−∞
P [Y ≤ t]dt, ∀z ∈ R.

Using the concept of second-order stochastic dominance (SSD), Rothschild and Stiglitz

(1970) showed that if X dominates Y by the second-order stochastic dominance

(X �SSD Y ) then it follows that the relation E[u(X)] ≥ E[u(Y )] holds true for

all non-decreasing concave functions u where the inequality is strict for at least one
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such u.

By replacing the monotonicity axiom (A1) in the definition of coherent risk mea-

sures (see §1.3) with the requirement of second-order stochastic dominance isotonicity

(Giorgi, 2005; Pflug, 2000):

(−X) �SSD (−Y )⇒ R(X) ≤ R(Y )

we can obtain risk measures consistent with the SSD ordering and the utility theory

of von Neumann and Morgenstern (1944). More precisely, we consider risk measures

R : X 7→ R that satisfy the following set of axioms:

(S1) SSD isotonicity : (−X) �SSD (−Y )⇒ R(X) ≤ R(Y ),∀X, Y ∈ X ,

(A2) convexity : R(λX+(1−λ)Y ) ≤ λR(X)+(1−λ)R(Y ),∀X, Y ∈ X , 0 ≤ λ ≤ 1,

(A3) positive homogeneity : R(λX) = λR(X),∀X ∈ X , λ > 0,

(A4) translation invariance: R(X + a) = R(X) + a,∀X ∈ X , a ∈ R

One should note that (S1) requires X and Y to be integrable. For more on the

topological properties of sets defined by stochastic dominance relations see Dentcheva

and Ruszczyński (2004). With the properties of stochastic dominance defined, we can

once again find an analog of formula (1.13) that would allow for the construction of

risk measures that adhere to the rules of the vNM utility theory.

Theorem 1.3.2 (Krokhmal (2007)). Let function φ : (X) 7→ R satisfy axioms (S1),

(A2), (A3) and be a lsc function such that φ(η) > η for all real η 6= 0. Then the

optimal value of the stochastic programming problem

ρ(X) = min
η∈R

η + φ(X − η) (1.16)
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exists and is a proper function that satisfies (S1), (A2)–(A4).

Obviously, by solving the risk-minimization problem

min
x∈C

ρ
(
X(x, ω)

)
where ρ(X) is a risk measure that is both coherent and SSD-compatible in the sense

of (S1), one obtains a solution that acceptable to any risk-averse rational utility

maximizer, and also bears the lowest risk in terms of coherence preference metrics.

Notably, one class of coherent risk measures is represented by the HMCR measures

(1.14).

Example 1. The higher-moment coherent risk measures

HMCRp,α(X) = min
η∈R

η + (1− α)−1‖(X − η)+‖p, p ≥ 1, α ∈ (0, 1)

satisfy both the coherence properties (A1)–(A4) and the SSD isotonicity property

(S1), and are therefore compatible with SSD ordering and utility theory, are the

HMCR measures (1.14). For the particular case of Conditional Value-at-Risk (p = 1),

this fact has been observed by Pflug (2000).

1.4 Deviation Measures

The introduction of the axiomatic approach to the development of risk mea-

sures by Artzner et al. (1999) has fueled the development of many new types of risk

measures that can be tailored to specific applications and preferences (see Acerbi

(2002), Rockafellar et al. (2006) and Ruszczyński and Shapiro (2006)). In this section

we will look at the development of deviation measures which have been introduced

by Rockafellar et al. (2006). The definition of a deviation measure is a mapping

D : X 7→ [0,+∞] that satisfies the following axioms:
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(D1) D > 0 for any non-constant X ∈ X , whereas D(X) = 0 for constant X,

(D2) D(λX + (1− λ)Y ) ≤ λDX + (1− λ)D(Y ) ∀X, Y ∈ X , ∀λ ∈ (0, 1)

(D3) D(λX) = λD(X) ∀X ∈ X , λ > 0

(D4) D(X + a) = D(X), ∀X ∈ X , a ∈ R

If, moreover, D(X) also satisfies

(D5) D(X) ≤ ess.sup X − E[X], ∀X ∈ X

then D(X) is characterized by the one-to-one correspondence:

D(X) = R(X − E[X]) (1.17)

with expectation-bounded coherent risk measures (i.e., risk measures that satisfy (A1)–

(A4) and R(X) > E[X], for all nonconstant X ∈ X and R(X) = E[X] for all

constant X ∈ X (Rockafellar et al., 2006)).

With this result we can formulate an analog of formula (1.13) for deviation

measures.

Theorem 1.4.1 (Krokhmal (2007)). Let function φ : X 7→ R satisfy axioms (A1)-

(A3), and be a lsc function such that φ(x) > E[X] ∀X 6= 0. Then the optimal value

of the stochastic programming problem

D(X) = −E[X] + inf
η
{η + φ(X − η)} (1.18)

is a deviation measure and the infimum is attained for all X, so that inf
η

in (1.18)

may be replaced by min
η∈R

.
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The above results can be applied to deviation measures in the same way that

we applied the results of the previous theorems to coherent risk measures. Namely,

it allows one to consider the higher moment deviation measures

HMDp, α(X) = HMCRp,α(X − EX) (1.19)

and semi-moment deviation measures

SMDp, β(X) = SMCRp,β(X − EX) = β‖(X − EX)+‖p (1.20)

with the latter obviously reducing to the well-known Lower Partial Moment measures

of risk.

1.5 Implementation of Coherent and Deviation
Measures in Mathematical Programming
Problems with p-Order Conic Constraints

The traditional method of modeling of uncertainty in stochastic programming

(see, e.g., Birge and Louveaux, 1997; Prékopa, 1995) is by introducing a finite set of

scenarios {ω1, . . . , ωJ} ⊆ Ω, whereby each decision x results in a range of outcomes

X(x, ω1), . . . , X(x, ωJ) that have respective probabilities $1, . . . , $J , where $j =

P{ωj} ∈ (0, 1) and $1 + . . .+$J = 1. Within this framework, the HMCR measures

(1.14), SMCR measures (1.15), as well as their deviation counterparts (1.19), (1.20)

can be implemented in the objective and/or constraints of a stochastic optimization

problem using conic constraints of order p ≥ 1.

Implementation of the HMCR measures (1.14) in stochastic programming mod-

els is facilitated by means of the following general result regarding risk measures that

admit representation in the form (1.13).
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Theorem 1.5.1 (Krokhmal (2007)). Consider the following stochastic optimization

problems with risk objective and constraints

min
x∈C

R
(
X(x, ω)

)
(1.21a)

min
x∈C

{
g(x)

∣∣R(X(x, ω)
)
≤ c

}
(1.21b)

where X(x, ω) is convex in x over some closed convex set C ⊂ Rn, R(X) is a risk

measure, and g(x) is a given convex function on C. Assuming that risk measure R

has representation (1.13) where φ satisfies the conditions of Theorem 1.3.1, introduce

the following counterparts of (1.21a)–(1.21b):

min
(x,η)∈C×R

η + φ
(
X(x, ω)− η

)
(1.22a)

min
(x,η)∈C×R

{
g(x)

∣∣ η + φ
(
X(x, ω)− η

)
≤ c

}
(1.22b)

Then, optimization problems (1.21a) and (1.22a) are equivalent in the sense that

they achieve minima at the same values of the decision variable x and their optimal

objective values coincide. The same holds for the pair (1.21b), (1.22b). Further, if

the risk constraint in (1.21b) is binding at optimality, (x∗, η∗) achieves the minimum

of (1.22b) if and only if x∗ is an optimal solution of (1.21b) and η∗ ∈ arg minη
{
η+

φ
(
X(x, ω)− η

) }
.

A similar result also exists for stochastic programming implementation of devi-

ation measures that admit representation (1.18), see Krokhmal (2007).

As an illustration of how incorporation of coherent risk measures or deviation

measures that involve higher moments of loss distributions leads to mathematical

programming problems with p-order conic constraints, we consider handling an ob-

jective or constraint containing HMCR measure. According to the above Theorem it
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can be expressed using the constraint

HMCRp,α
(
X(x, ω)

)
≤ u

with u being either a variable or a constant, correspondingly. By virtue of The-

orem 1.5.1 applied to definition (1.14), the latter constraint can be written in the

form

η + (1− α)−1
∥∥(X(x, ω)− η

)+∥∥
p
≤ u,

which, in turn, can be represented by the following set of inequalities

u ≥ η + (1− α)−1t (1.23a)

t ≥
(
wp1 + . . .+ wpJ

)1/p
(1.23b)

wj ≥ $
1/p
j

(
X(x, ωj)− η

)
, j = 1, . . . , J (1.23c)

wj ≥ 0, j = 1, . . . , J (1.23d)

Constraint (1.23b) defines a (J + 1)-dimensional cone of order p, and is central to

practical implementation of coherent risk measures (1.14), (1.15) and deviation mea-

sures (1.19), (1.20) that involve higher moments of distributions in decision making

models.

For instance, it is easy to see that implementation of the SMCR measures (1.15)

in stochastic programming models can be reduced to essentially the same system of

inequalities, complemented by the equality constraint

η =
J∑
j=1

$jX(x, ωj) (1.24)
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Observe that linearity of the loss function X(x, ω) in x, which is the case in many

important applications, immediately guarantees convexity of both sets (1.23) and

(1.23)–(1.24), and moreover, the addition of the linear constraint (1.24) eliminates

the free variable η in the system of constraints (1.23).

Similarly, the deviation counterparts of HMCR and SMCR risk measures can

be incorporated into stochastic programming models by means of p-order conic con-

straints.

Many models in stochastic optimization are formulated as linear programming

problemss of form (1.1) whereX(x, ω) is a linear function of x and S is a polyhedron in

Rn. Then, in the spirit of the foregoing discussion, such models can be equipped with

risk-averse preferences by replacing the expectation operator in the objective function

of (1.1) with an appropriately chosen coherent risk measure or deviation measure.

In view of this, our interest is in the development of computational procedures that

would facilitate the incorporation of coherent and deviation measures based on higher

moments of loss distributions in otherwise linear decision models.

The main objective of the presented research endeavor is the development of

fast and robust solution algorithms for stochastic optimization problems that can be

reduced to linear programming problems with p-order conic consraints:

min c>x (1.25a)

s. t. Ax ≤ b (1.25b)∥∥D(k)x− f (k)
∥∥
pk
≤ h(k)>x− g(k), k = 1, . . . , K (1.25c)

In the discussion that follows we present the details of the proposed approaches to

solving the p-order conic programming problems of type (1.25), and illustrate the

developed algorithms on a portfolio optimization case study.
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CHAPTER 2

A POLYHEDRAL APPROXIMATION APPROACH TO SOLVING
P-ORDER CONIC PROGRAMMING PROBLEMS

2.1 Introduction

In the previous chapter we have surveyed a number of decision-making models

under uncertainty that are based on coherent and deviation measures involving higher

moments of loss distributions. The corresponding stochastic optimization problems

can, in many cases, be reduced to linear programming problems with p-order conic

constraints. In this section we advocate an approach to solving such problems using

polyhedral approximations of p-cones, and we develop the corresponding approxima-

tions. We also discuss a special case when a p-order conic programming problem can

be reduced to second order conic programming problem.

2.2 A polyhedral approximation approach to
solving p-order conic programming prob-
lems

As it has been mentioned in Chapter 1, in this work we are concerned with

solving linear programming problems with p-order conic constraints

min c>x (2.1a)

s. t. Ax ≤ b (2.1b)∥∥D(k)x− f (k)
∥∥
pk
≤ h(k)>x− g(k), k = 1, . . . , K, (2.1c)

where ‖ · ‖p denotes the p-norm:

‖a‖p =
(
|a1|p + · · ·+ |am|p

)1/p
, a ∈ Rm, p ≥ 1.
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Formulation (2.1) is a generalization of the well-known class of second-order conic

programming (SOCP) problems, and therefore we will call (2.1) a p-order conic pro-

gramming (pOCP) problem.

The key feature of the pOCP problem (2.1) is the p-order conic constraints,

which can be stated in a simple form as

t ≥ (ξp1 + . . .+ ξpJ)1/p, (2.2)

where we can assume without loss of generality that all variables are nonnegative.

Depending on the value of the parameter p, the following cases can be identified.

p = 1: In this case the p-cone constraint (2.2) reduces to a linear inequality

t ≥ ξ1 + . . .+ ξJ .

This particular case and the associated stochastic optimization models of type (2.1)

have been studied extensively in the context of the Conditional Value-at-Risk mea-

sure (Rockafellar and Uryasev, 2000, 2002b; Krokhmal et al., 2002a). In general, the

amenability of the 1-norm, also known as the “Manhattan distance,” etc., to imple-

mentation via linear constraints has been exploited in a variety of approaches and

applications too numerous to cite here.

p =∞: In this case ‖a‖∞ = supi |ai|, whereby the p-cone constraint (2.2) reduces

to a polyhedral set defined by a system of J linear inequalities

t ≥ ξj, j = 1, . . . , J.

Constraints of this type have also been heavily researched in the literature.

p = 2: In this instance, constraint (2.2) represents a second-order (quadratic,
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“ice cream”, or Lorentz) cone,

t ≥ (ξ2
1 + . . .+ ξ2

J)1/2. (2.3)

The second-order conic programming (SOCP) problem, which deals with optimization

problems that contain constraints of form (2.3), constitutes a well-developed subject

of convex programming. A number of efficient SOCP algorithms have been developed

in the literature (e.g., Nesterov and Todd, 1997, 1998, and others. See an overview

in Alizadeh and Goldfarb, 2003), and some of them were implemented into software

solver codes such as MOSEK and SeDuMi (Andersen et al., 2003; Sturm, 1998).

p ∈ (1, 2) ∪ (2,+∞): This is the “general” case that constitutes the focus of our

research. In addition to stochastic programming applications described in Chapter 1,

the general p-order conic programming has been considered in the context of Steiner

minimum tree problem on a given topology (Xue and Ye, 2000); a p-cone relaxation

of integer programming problems is discussed in Burer and Chen (2008).

From the computational standpoint, the case of general p, when the cone defined

by (2.2) is not self-dual, has received much less attention in the literature compared

to the conic quadratic programming. Interior-point approaches to p-order conic pro-

gramming have been considered by Xue and Ye (2000) with respect to minimization

of the sum of p-norms; a self-concordant barrier for p-cones has also been introduced

in Nesterov (2006). Glineur and Terlaky (2004) proposed an interior point algorithm

along with the corresponding barrier functions for a related problem of lp-norm op-

timization (see also Terlaky, 1985). In the case when p is a rational number, the

existing primal-dual methods of SOCP can be employed for solving p-order conic

optimization problems using a reduction of p-order conic constraints to a system of

linear and second-order conic constraints proposed in Nesterov and Nemirovski (1994)
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and Ben-Tal and Nemirovski (2001a).

Our approach to solving pOCP problems (2.1) in the case of pk ∈ (1, 2)∪ (2,∞)

consists of constructing polyhedral approximations for the p-order constraints and

subsequent solving of the resulting LP problem using a Benders-type decomposition

method (see Chapter 3). In many respects, the proposed approach builds upon the

work of Ben-Tal and Nemirovski (2001b) where an efficient lifted polyhedral approx-

imation for the second-order (p = 2) cones was developed, and whose motivation was

to devise a practical method of solving SOCP problems of the form (2.1) that would

utilize the powerful machinery of LP solvers. Given the possibility of reformulating

a pOCP problem (2.1) in the case when pk ∈ Q as a SOCP problem (constructive

formulas for which are developed in this chapter), the following can be considered as

our main motivation for pursuing the polyhedral approximation approach to solving

pOCP problems:

• As it will be seen below, a SOCP reformulation in the case of a rational p results

in a SOCP problem with much larger number of conic constraints than in the

original pOCP problem. Currently, SOCP solvers are more effective in handling

SOCP problems with few conic constraints of high dimensionality than in the

case when a problem contains a large number of quadratic conic constraints.

Actually, this observation also served as a motivation for the development of

polyhedral approximations for second-order cones in the work of Ben-Tal and

Nemirovski (2001b).

• Many stochastic programming models are formulated as linear programming

problems. Due to the specific structure of SP models induced by modeling

the uncertainties using discrete scenario sets, a number of iterative algorithms
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based on some sort of scenario decomposition have been developed for stochastic

programming problems in the literature. Good performance of these meth-

ods in practice can often be attributed to the “warm start” capabilities of

simplex-based LP optimization algorithms. In contrast, interior-point methods,

including the SOCP algorithms, are currently lacking the “warm start” capabil-

ities, which may jeopardize the effectiveness of implementation of pOCP-based

stochastic optimization models. Thus the development of polyhedral approxi-

mations of pOCP problem (2.1) potentially allows for implementing the HMCR,

SMCR, and corresponding deviation measures, etc., in large-scale, multi-stage

stochastic optimization problems that can be efficiently tackled by the existing

decomposition-based SP algorithms that exploit the scenario and stage-specific

structure of such problems.

Next we discuss the details of the proposed method of solving the p-order conic

programming problems of type (2.1) that relies on the construction of polyhedral

approximations for p-order cones. Without loss of generality, we restrict our attention

to a p-order cone in the positive orthant of (J + 1)-dimensional space:

K(J+1)
p =

{
ξ ∈ RJ+1

+

∣∣∣ ξJ+1 ≥
(
ξp1 + . . .+ ξpJ

)1/p
}
, (2.4)

where R+ = [0,+∞). By a polyhedral approximation of K(J+1)
p we understand a

(convex) polyhedral cone in RJ+1+κm , where κm may be generally non-zero:

H(J+1)
p,m =


ξ

u

 ∈ RJ+1+κm
+

∣∣∣∣ H(J+1)
p,m

ξ

u

 ≥ 0

 (2.5)

having the properties that
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(H1) any (ξ1, . . . , ξJ+1)> ∈ K(J+1)
p can be extended to some (ξ1, . . . , ξJ+1,

u1, . . . , uκm)> ∈ H(J+1)
p,m ;

(H2) for some prescribed ε > 0, any (ξ1, . . . , uκm)> ∈ H(J+1)
p,m satisfies

(
ξp1 + . . .+ ξpJ

)1/p ≤ (1 + ε)ξJ+1 (2.6)

Here m is the parameter of construction that controls the approximation accuracy ε.

Replacing each of the p-order conic constraints in problem (2.1) by their polyhedral

approximations (2.5), we obtain an LP approximation of the pOCP problem (2.1)

min

c>x

∣∣∣∣∣ Ax ≤ b, H(Jk+1)
pk,mk


D(k)x− f (k)

h(k)>x− g(k)

u(k)

 ≥ 0, k = 1, . . . , K

 . (2.7)

Extending the arguments of Ben-Tal and Nemirovski (2001b) to the case of p ∈

(1, 2) ∪ (2,+∞), we observe that the projection of the feasible region of (2.7) on

the space of variables x lies between the feasible set of problem (2.1) and that of its

“ε-approximation”,

min
{

c>x
∣∣∣ Ax ≤ b,

∥∥D(k)x− f (k)
∥∥
pk
≤ (1 + ε)

(
h(k)>x− g(k)

)
, k = 1, . . . , K

}
.

(2.8)

Thus, problem (2.7) represents an ε-approximation of (2.1) if the feasible regions of

problems (2.1) and (2.8) are “close”. Conditions under which the feasible sets of (2.1)

and (2.8) are indeed O(ε)-close have been given by Ben-Tal and Nemirovski (2001b,

Proposition 4.1) for the case of p = 2, and their argumentation carries over to the

case of p 6= 2 practically without modifications.
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In constructing the polyhedral approximations, of the form defined by (2.5)

for p-order cone (2.4), we follow the approach of Ben-Tal and Nemirovski (2001b)

(see also Nesterov and Nemirovski, 1994; Ben-Tal and Nemirovski, 2001a), which

allows for reducing the dimensionality of approximation (2.5) by replacing the (J +

1)-dimensional conic constraint with an equivalent system of 3-dimensional conic

constraints, and then constructing a polyhedral approximation for each of the 3D

cones.

2.3 Dimension Reduction Techniques

In this section we discuss constructive techniques for representing the p-order

cone (2.4) of an arbitrary dimension J + 1 using conic constraints in R3, such that

the total number of the 3-dimensional conic constraints is O(J).

2.3.1 “Tower-of-variables”

The “tower-of-variables” technique was originally proposed by Ben-Tal and Ne-

mirovski (2001b) for the construction of a polyhedral approximation of the second-

order (p = 2) conic constraints, and it applies to p-order conic constraints as well. It

essentially represents a p-order cone in (J + 1)-dimensional space as the intersection

of J − 1 3-dimensional p-order cones.

To demonstrate this technique when applied to p-order cones, we will assume for

simplicity that J = 2d for some d ∈ Z+, in which case a (2d+1)-dimensional p-conic set

can be shown to have an equivalent “lifted” representation through 2d−1 p-conic sets

in R3. This assumption, however, is not restricting in any way, as will be demonstrated

by Proposition 1 whose proof furnishes constructive formulas that generalized the

original “tower-of-variables” representation of Ben-Tal and Nemirovski (2001b) to
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arbitrary J ≥ 2 and p ≥ 1.

Consider a p-cone in the positive orthant RJ+1

t ≥ (ξp1 + . . .+ ξpJ)1/p, (2.9)

where J = 2d. By introducing new (non-negative) variables

ξ
(`)
j , j = 0, . . . 2d−`, ` = 0, . . . d,

where

ξj ≡ ξ
(0)
j , j = 1, . . . , 2d

t ≡ ξ
(d)
1

(2.10)

it is easy to see that the above p-cone inequality is equivalent to the following set of

p-cone inequalities:

ξ
(`)
j ≥

((
ξ

(`−1)
2j−1

)p
+
(
ξ

(`−1)
2j

)p)1/p

, ` = 1, . . . , d, j = 1, . . . , 2d−` (2.11)

This is an equivalent representation of the p-cone set (2.9) in RJ+1 in the sense that

the collection of variables in (2.10) can be extended to a feasible point of (2.11) if

and only if (ξ, t) satisfies (2.10).

The set of constraints (2.11) can be visualized as a “tower” or “pyramid” con-

sisting of d + 1 “levels” denoted by the superscript ` = 0, . . . , d, with 2d−` variables

ξ
(`)
j at level `, such that the 2d = J variables ξ

(0)
j ≡ ξj represent the “foundation” of

the “tower”, and the variable ξ
(d)
1 ≡ t represents its “top”, or “apex”.

Example 2. Given a p-cone, t ≥ (wp1 + . . . + wp8)1/p in R9, the described above

“tower-of-variables” method can be used to equivalently represent it via 8 − 1 = 7
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Figure 2.1: Tower of variables with 8 scenarios.

three-dimensional p-cones as follows (see also Figure 2.1):

w
(1)
1 ≥

(
(w

(0)
1 )p + (w

(0)
2 )p

)1/p

w
(1)
2 ≥

(
(w

(0)
3 )p + (w

(0)
4 )p

)1/p

w
(1)
3 ≥

(
(w

(0)
5 )p + (w

(0)
6 )p

)1/p

w
(1)
4 ≥

(
(w

(0)
7 )p + (w

(0)
8 )p

)1/p

w
(2)
1 ≥

(
(w

(1)
1 )p + (w

(1)
2 )p

)1/p

w
(2)
2 ≥

(
(w

(1)
3 )p + (w

(1)
4 )p

)1/p

w
(3)
1 ≥

(
(w

(2)
1 )p + (w

(2)
2 )p

)1/p

As it has been mentioned earlier, the construction for the tower of variables is

not limited to cones in R2d+1. Next we demonstrate how this construction can be
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extended to the case J 6= 2d, so that the number of 3D p-cones required to equivalently

represent a (J + 1)-dimensional p-cone is still equal to J − 1.

Proposition 1. The construction of the tower of variables can be extended to general

J 6= 2d such that a p-cone in RJ+1 is represented as intersection of a set of J − 1

p-cones in R3.

Proof. Consider a p-cone in the positive orthant of RJ+1:

t ≥
(
ξp1 + . . .+ ξpJ

)1/p
, (2.12)

For an integer J > 2, let

J =
d̄∑

k=0

δk2
k, (2.13)

where

d̄ =
⌈

log2 J
⌉
,

and δk ∈ {0, 1}, i.e., δk is the k-th digit in the binary representation of the integer J .

Let DJ denote the (ordered) set of those k in (2.13) for which δk are non-zero:

DJ = { k0 < k1 < . . . < ks−1 | δki = 1 }, s = |DJ | =
d̄∑

k=1

δk. (2.14)

Then, for each k such that 1 ≤ k ≤ d̄ and δk 6= 0, the following constraints can be

written:

ξ
(`)
j ≥

((
ξ

(`−1)
2j−1

)p
+
(
ξ

(`−1)
2j

)p)1/p

,

j = 1 +
d̄∑

r=k+1

δr2
r−`, . . . ,

d̄∑
r=k

δr2
r−`, ` = 1, . . . , k, k ∈ DJ\{0}.

(2.15)
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For every k ∈ DJ\{0} constraints (2.15) define a “sub-tower of variables”, each having

k + 1 “levels” including the “foundation” (` = 0) comprised of 2k variables ξ
(0)
j and

the “top” variable

ξ
(k)
jk
, where jk =

d̄∑
r=k

δr2
r−k. (2.16)

To complete our representation of (J + 1)-dimensional p-order conic constraint, we

must formulate the corresponding constraints that “connect” the “top” variables

(2.16). This can be accomplished in a recursive manner as follows

ξ(κr+1)
νr+1

≥
((
ξ

(kr)
jkr

)p
+
(
ξ(κr)
νr

)p)1/p

, r = 1, . . . ,
d̄−2∑
k=0

δk, (2.17)

where

κ1 = k0, ν1 = jk0 and κr+1 = kr + 1, νr+1 =
jkr + 1

2
for r = 1, . . . ,

d̄−2∑
k=0

δk.

It is straightforward to verify that the projection of the set defined by (2.15), (2.17)

on the space of variables ξ
(0)
j ≡ ξj, (j = 1, . . . , J), ξd̄1 = t is equal to the set (2.12).

It is also evident that when J = 2d = 2d̄, the set DJ will contain just one element:

DJ = {d̄}, whereby (2.15) reduces to “tower of variables” (2.11) with constraints

(2.17) being absent.

Observe that set (2.15) comprises
d̄∑

k=1

δk “sub-towers”, each containing 2k − 1

constraints, and set (2.17) consists of
d̄−2∑
k=1

δk constraints, therefore the representation

(2.15), (2.17) of the p-order conic constraint in RJ+1 contains

d̄∑
k=1

δk(2
k − 1) +

d̄−2∑
k=1

δk =
d̄∑

k=1

δk2
k − δd̄−1 − δd̄ = J − 1 (2.18)
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three-dimensional p-order constraints. Indeed,

δd̄−1 + δd̄ = 1

since δd̄ = 1, δd̄−1 = 0 if J = 2d = 2d̄, whereas δd̄ = 0, δd̄−1 = 1 for J < 2d̄.

Remark 1. The importance of the tower of variables technique lies in the fact that it

allows for drastic reductions in the dimensionality of polyhedral approximations that

will be presented later on in this chapter. Indeed, it can be shown that the number

of facets needed to approximate a second-order cone is exponential in the cone’s di-

mensions (Ben-Tal and Nemirovski, 2001b). By representing a p-cone in RJ+1 by a

sequence of J − 1 p-cones in R3, it becomes possible to develop an approximation for

p-cone whose dimensionality will increase linearly with the number of dimensions of

the original p-cone.

2.3.2 pOCP to SOCP Reformulation

In the case when the parameter p is a positive rational number, p = r/s, the

(J + 1)-dimensional p-order cone

t ≥ (ξp1 + ξp2 + · · ·+ ξpJ)1/p

can be represented by a set of linear inequalities and 3D second-order conic constraints

(Nesterov and Nemirovski, 1994; Ben-Tal and Nemirovski, 2001a; see also Alizadeh

and Goldfarb, 2003), which opens possibilities for handling p-order conic constraints

using SOCP methods. Below we demonstrate that the number of 3D second-order

conic constraints needed to represent an (r/s)-order cone in RJ+1 is no more than

O(J log r).
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Let p = r/s, r > s. Then, using the non-negativity of variables ξj and t, we can

rewrite inequality (2.9) as follows:

t
r
s ≥ ξ

r
s
1 + · · ·+ ξ

r
s
J

⇔ t
r
s

+1−1 ≥ ξ
r
s
1 + · · ·+ ξ

r
s
J

⇔ t ≥
J∑
j=1

ξ
r
s
j t

1− r
s

Introducing new non-negative variables uj such that uj ≥ ξ
r
s
j t

1− r
s , j = 1, . . . , J , we

arrive at the following system of inequalities as a representation of (2.9):

t ≥
J∑
j=1

uj (2.19a)

usjt
r−s ≥ ξrj , j = 1, . . . , J (2.19b)

uj ≥ 0, j = 1, . . . , J (2.19c)

Each constraint (2.19b) can now be equivalently represented by a system of “rotated”

second order conic inequalities using similar principles that were employed in the

“tower of variables” construction. Such a representation, however, is not unique.

One way of doing that is to rewrite each inequality in (2.19b) as

usjt
r−sξR−r ≥ ξRj , j = 1, . . . , J (2.20)

where

R = 2ρ, ρ = dlog2 re

Then, by invoking the “tower of variables” principle, each of J constraints (2.20) can
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be expressed via 2ρ − 1 inequalities of the form z2 ≤ xy:

ξ2
j ≤ v

(ρ−1)
j,1 v

(ρ−1)
j,2 (2.21a)

(v
(l)
j,k)

2 ≤ v
(l−1)
j,2k−1v

(l−1)
j,2k , l = 2, . . . , ρ− 1; k = 1, · · · , 2ρ−l (2.21b)

(v
(1)
j,k )2 ≤ u2

j , k = 1, . . . ,
⌊s

2

⌋
(2.21c)

(v
(1)
j,k )2 ≤ ujt, k =

⌊s
2

⌋
+ 1, . . . ,

⌈s
2

⌉
(2.21d)

(v
(1)
j,k )2 ≤ t2, k =

⌈s
2

⌉
+ 1, . . . ,

⌊r
2

⌋
(2.21e)

(v
(1)
j,k )2 ≤ tξj, k =

⌊r
2

⌋
+ 1, . . . ,

⌈r
2

⌉
(2.21f)

(v
(1)
j,k )2 ≤ ξ2

j , k =
⌈r

2

⌉
+ 1, . . . ,

R

2
. (2.21g)

Similar to the “tower of variables” construction in (2.11), the set of inequalities in

(2.21) can be visualized as a binary tree whose nodes represent the variables in (2.21).

Each inequality in (2.21) can then be viewed as a subgraph with two arcs that connect

the “parent” node (the variable at the left-hand side of a constraint) to two “child”

nodes (the variables at the right-hand side of same constraint). In such a way, the

variable ξj in (2.21a) represents the root node of the binary tree (“top of the tower”),

and the variables uj, t, and ξj in (2.21c)–(2.21g) represent the leaf nodes of the tree

(“bottom of the tower”).

Figure 2.3 presents an illustration of the “tower-of-variables” principle employed

in the construction of set (2.21) on the example of p = 5
3
.

An inequality of the form

z2 ≤ xy, (2.22)

or, generally,

z>z ≤ xy,
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is known as a “rotated” second order cone, for it is equivalent to the standard second

order cone:

(2z)2 + (x− y)2 ≤ (x+ y)2, (2.23)

or, correspondingly,

4z>z + (x− y)2 ≤ (x+ y)2.

u u u u u u u u

v
(1)
j,4v

(1)
j,3

v
(1)
j,2v

(1)
j,1

v
(ν−1)
j,2k−1 v

(ν−1)
j,2k

v
(ν)
j,k

Figure 2.2: Subtree with linear constraints.

Note, however, that not all the inequalities of (2.21) are “true” second order

cones. In fact, we have the following result:

Proposition 2. When p is a positive rational number, p = r/s, such that r > s and

r and s do not have common multiples except 1, a p-order conic constraint in the
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positive orthant of RJ+1 can be equivalently represented by a set of linear constraints

and O(J log r) second-order conic constraints in R3.

Proof. Consider the constraints (2.21c)-(2.21g) at the bottom of the tower of variables

as constructed by the system of inequalities in (2.21). It is easy to see that only

(2.21d) and (2.21f) are “true” second order conic constraints while constraints (2.21c),

(2.21e), and (2.21g) consist of all positive variables and thus, taking a square root

would reduce these inequalities to linear inequalities.

Next, observe that among inequalities (2.21b), only those that have inequalities

(2.21d) or (2.21f) as children will evolve into true second order conic constraints (see

Figure 2.3). Assume without loss of generality that for some ν > 1 the subtree of

(2.21) with the root node v
(ν)
j,1 has all of its 2ν leaf nodes as variables uj of (2.21c)

(see Figure 2.2), and consider the set C defined by the constraints of this subtree:

C =

v(l)
k , u ≥ 0

∣∣∣∣∣
(
v

(l)
k

)2 ≤ v
(l−1)
2k−1v

(l−1)
2k , k = 1, . . . , 2ν−l, l = 2, . . . , ν(

v
(1)
k

)2 ≤ u2, k = 1, . . . , 2ν−1

 (2.24)

where the subscript j is omitted for brevity. Then, the projection of the set C on the

space of variables (v
(ν)
k , u) is equal to

C ′ =
{
v

(ν)
k ≤ u

}
First, let us show that C reduces to C ′. The inequalities at the base of the subtree

are:

(
v

(1)
k

)2 ≤ u2, k = 1, . . . , 2ν−1 (2.25)

which reduce to:

v
(1)
k ≤ u, k = 1, . . . , 2ν−1.
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The next level on the tower would yield the constraints:

(
v

(2)
k

)2 ≤ v
(1)
2k−1v

(1)
2k , k = 1, . . . , 2ν−2 (2.26)

On substituting (2.25) into (2.26) we obtain that

v
(2)
k ≤ u k = 1, . . . , 2ν−2

Continuing this process by chain substitution of the conic inequalities defining the

set C into each other we get

v
(ν)
1 ≤

(
v

(ν−1)
1 v

(ν−1)
2

)1/2

≤ . . . ≤

(
2ν−1∏
k=1

v
(1)
k

)1/2ν−1

≤ u

Next we show that C ′ can be extended to C. for each
(
v

(ν)
1 , u

)
∈ C ′ one can

always select ṽ
(ν−1)
1 = ṽ

(ν−1)
2 = . . . = ṽ

(1)
1 = . . . = ṽ

(1)

2ν−1 = u so that

(
v

(ν)
1 ; ṽ

(ν−1)
1 , ṽ

(ν−1)
2 ; . . . ; ṽ

(1)
1 , . . . , ṽ

(1)

2ν−1 ;u
)
∈ C

Thus, we have shown that C ′ can be extended to C and vice versa.

Hence, among the constraints (2.21) only those are the “true” conic constraints

that correspond to root nodes of subtrees whose leaf nodes are not comprised of the

same variable. Then, it is easy to see that these second-order conic constraints in

(2.21) correspond to nodes that belong to paths from the root note ξj in (2.21a) to

v
(1)
j,k in (2.21d) and (2.21f). Assuming that r and s do not have common multiples

other than 1, so that they cannot be even simultaneously, the number of second-order

conic constraints among (2.21c)–(2.21g) equals to

nrs =
(
ds/2e − bs/2c

)
+
(
dr/2e − br/2c

)
∈ {1, 2}.
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According to the above observation on the linear nature of “subtowers” that

have leaf nodes comprised of the same variable, the number of “true” second-order

conic constraints at level l = 2 will be also no more than nrs, and so on.

Given that there are ρ + 1 “levels” in the tower-of-variables (2.21) and that in

the case of nrs = 2 the two paths share the common root ξj in (2.21a), there are

nrs(ρ − 1) + 1 conic constraints in (2.21). Hence the p-order cone (2.9) in RJ+1 can

be equivalently represented by a set of linear constraints and J(nrs(ρ − 1) + 1) =

O(J log2 r) rotated second-order conic constraints in R3.

u u u

v
(1)
j,4v

(1)
j,3

v
(1)
j,2v

(1)
j,1

v
(ν−1)
j,2k−1 v

(ν−1)
j,2k

v
(ν)
j,k

t wwwt

Figure 2.3: Subtree with conic constraints.

Proposition 2 provides constructive formulas for reformulating the pOCP prob-

lem (2.1) with rational parameters pk as a SOCP problem. However, current interior

point solvers for second order conic programming are less effective when the number
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of second order conic constraints in the problem is large. Therefore, getting a bound

on the number of second order cones that result from the pOCP→SOCP reformu-

lation is key to the efficiency of this approach. We also note that in many cases it

is possible to make the pOCP→SOCP reformulation (2.19)–(2.21) in the case of a

rational p even more economical in the number of true second-order rotated cones by

rearranging the order of variables uj, t, ξj in (2.21a)–(2.21g). Next we discuss the

technical details of implementing the pOCP constraints via SOCP constraints using

commercially available solvers.

2.3.3 Implementation using SOCP solvers

Many existing SOCP solvers, such as CPLEX, MOSEK, etc., require additional

variables to be introduced in order for the solver to process the “standard” and

“rotated” second order conic constraints properly. For example, to implement a

“rotated” second order cone (2.22) to be used with CPLEX Barrier solver one has to

replace (2.22) with the following system of constraints:

(2z)2 + v2
0 ≤ v2

1 (2.27a)

v0 = x− y (2.27b)

v1 = x+ y (2.27c)

While the MOSEK solver is capable of handling the rotated second-order cone con-

straints directly, it requires that no variable may appear in different conic constraints

simultaneously. This necessitates introduction of additional auxiliary variables and

linear constraints in the problem. For instance, the following two rotates second-order

constraints

z2 ≤ xy, x2 ≤ uv
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must be implemented for use with the MOSEK solver as, for instance,

z2 ≤ xy, t2 ≤ uv, t = x.

A simplification that results in reduction in the number of second-order constraints

in (2.21) is available for integer values of the parameter p ∈ Z+, namely p = r
1
, r ∈ N.

Since the variable u enters the inequality (2.20) linearly, we can exploit the fact that

either r is even and therefore, r−s is odd and R− r is even, or r is odd and therefore

r− s is even and R− r is odd. With this in mind, we were able to reduce the number

of “true” second order conic constraints at the “bottom” of the tower of variables to

1:

ξRj ≤

{
ujt

r−sξR−r if p is even

ujξ
R−rtr−s if p is odd

(2.28)

This led to our problem generating exactly J(2(%−1)+1) “rotated” conic constraints

all of which were generated by either an inequality of type (2.21d) or (2.21f) at the

“bottom” level of the tower of variables. In order to deal with the “rotated” conic

constraint we needed to use the construction of the system of inequalities in (2.27) to

transform each “rotated” second order conic constraint into a standard second order

conic constraint. In either of the two cases in (2.28), we had only one set of conic

constraints being generated due to the commutativity of the variables.

2.4 Polyhedral Approximations of 3D p-Order
Cones

The “tower-of-variables” technique and the pOCP→SOCP reformulation dis-

cussed in the previous sections enables one to represent a p-order cone in multi-

dimensional space RJ+1 as an intersection of O(J) 3-dimensional p-order cones or
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second-order cones. This, in turn, allows for reducing the problem of constructing a

polyhedral approximation for multidimensional p-cone K(J+1)
p to the problem of poly-

hedral approximation of 3-dimensional p-cone K(3)
p . In this section we will discuss the

construction of polyhedral approximations for 3D p-cones.

2.4.1 Lifted polyhedral approximation of 3D second-
order cone K(3)

2

Ben-Tal and Nemirovski (2001b) considered the problem of constructing an “ef-

ficient” polyhedral approximation for a second order cone K(3)
2 . Their motivation

was the fact that, although efficient interior point methods have been developed for

SOCP problems that scale well with increased dimensionality of the second-order

cones, the effectiveness of these algorithms (or their current implementations) gener-

ally deteriorates when the number of conic constraints is large. This is not the case

for linear programming problems, where the existing solution methods are capable of

handling equally well LP instances with large number of variables and large number

of constraints.

Our approach to handling pOCP problems builds, to a large degree, on the ap-

proach of Ben-Tal and Nemirovski (2001b), which is outlined below. It is interesting to

note, however, that a computational study by Glineur (2000) showed that despite the

mathematical elegance of Ben-Tal and Nemirovski’s polyhedral approximation, the

resulting LP approximations generally did not outperform the interior-point SOCP

solvers. Nonetheless, as we will demonstrate in Chapter 4, the polyhedral approxima-

tion approach works well for the case of general p-order conic programming problems,

and is capable of outperforming the SOCP-based approach to pOCP problems that
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was presented above. In addition, Ben-Tal and Nemirovski’s polyhedral approxima-

tion has recently been proven quite effective in solving mixed integer conic quadratic

problems (Vielma, Ahmed, and Nemhauser, 2008).

The general form of the conic quadratic programming problem that was con-

sidered by Ben-Tal and Nemirovski (2001b) was as follows:

min
x

{
e>x | Ax ≥ b, ‖Alx− bl‖2 ≤ c>l x− dl, l = 1, . . . ,m

}
, (2.29)

where ‖y‖2 =
√

y>y is the standard euclidean norm. The significance of their con-

tribution was the fact that the constructed LP approximation of the SOCP problem

(2.29) has the same “size”, up to a factor O(log 1/ε), where ε is the accuracy of the

approximating LP:

min
x,{ul}ml=1

e>x (2.30a)

s. t. Ax ≥ b (2.30b)

Hkl


Alx− bl

c>l x− dl

ul

 ≥ 0, l = 1, . . . ,m (2.30c)

The definition of a polyhedral approximation links (2.29) and (2.30) in the sense that

both problems have the same objective and the projection of the feasible set of (2.30)

onto the x-space is in between the feasible set of (2.29) and that of its ε-relaxation

given by:

min
x

{
e>x | Ax ≥ b, ‖Alx− bl‖2 ≤ (1 + ε)

(
c>l x− dl

)
, l = 1, . . . ,m

}
(2.31)

Note that if ε is “small”, then (2.30) is a “good” approximation of (2.29). Moreover,
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it has been shown that the constructed approximation is the “tightest”, in the sense

that the bound on the size of approximating LP problem cannot be reduced.

Two key parts in Ben-Tal and Nemirovski’s method of constructing a polyhedral

approximation to a second-order cone is the “tower-of-variables” method of repre-

senting a quadratic cone in 2d + 1 dimensions via intersection of 2d− 1 3-dimensional

quadratic cones

L2 =
{
ξ ∈ R3|

√
|ξ1|2 + |ξ2|2 ≤ ξ3

}
and then constructing a “lifted” polyhedral approximation of L2 that employs addi-

tional variables uj, vj:

(a)

{
u0 ≥ |ξ1|
v0 ≥ |ξ2|

(b)

{
uj = cos

(
π

2j+1

)
uj−1 + sin

(
π

2j+1

)
vj−1

vj ≥ | − sin
(

π
2j+1

)
uj−1 + cos

(
π

2j+1

)
vj−1|

j = 1, . . . ,m

(c)

{
um ≤ ξ3

vm ≤ tan
(

π
2m+1

)
um

(2.32)

where m ∈ Z+ is the parameter of the construction that controls approximation

accuracy.

We should note here that the system of inequalities above can be straightfor-

wardly written as a system of linear homogeneous inequalities H
(3)
2,m

ξ

u

 ≥ 0, where

w is the vector of the 2(m + 1) variables uj, vj, j = 0, . . . ,m. Of particular impor-

tance for this approximation of the 3 dimensional Lorentz cone is the following result

concerning the error of the approximation:
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Proposition 3 (Ben-Tal and Nemirovski (2001b)). The convex polyhedral set

H(3)
2,m =


ξ

u

 ∈ R3+κm

∣∣∣∣ H
(3)
2,m

ξ

u

 ≥ 0


where the matrix H

(3)
2,m is defined by inequalities (2.32) is a polyhedral ε(m)-approx-

imation of L2 satisfying (H1) and (H2) with

ε(m) =
1

cos
(

π
2m+1

) − 1 = O

(
1

4m

)
.

By expressing the Lorentz cone Lk = {ξ ∈ Rk+1 | (ξ2
1 + · · · + ξ2

k)
1/2 ≤ ξk+1} of

dimension k + 1 as a system of conic quadratic constraints of dimension 3 each, we

can use the construction of (2.32) to approximate the Lk cone by approximating each

of the cones of dimension 3. With this generalization it was shown that the following

system of inequalities is as an approximation for the Lorentz cone Lk of dimension

k + 1:

(a`,i)

{
u0
`,i ≥ |ξ`−1

2i−1|
ν0
`,i ≥ |ξ`−1

2i |

(b`,i)

{
uj`,i = cos

(
π

2j+1

)
uj−1
`,i + sin

(
π

2j+1

)
νj−1
`,i

νj`,i ≥ | − sin
(

π
2j+1

)
uj−1
`,i + cos

(
π

2j+1

)
νj−1
`,i |

j = 1, · · · ,m`

(c`,i)

{
um``,i ≤ ξ`i
νm``,i ≤ tan

(
π

2m+1

)
ξm`

i = 1, · · · , 2d−`, ` = 1, · · · , d.

(2.33)

One of the wonderful properties that make this approximation very attractive for

practical usage is the quality, β, of the approximation:

β = β(m1, · · · ,md) =
d∏
`=1

1

cos
(

π
2m`+1

) − 1 (2.34)



www.manaraa.com

50

Given ε ∈ (0, 1] and setting

m` =

⌊
O(1)` ln

2

ε

⌋
, ` = 1, · · · , d,

with properly chosen absolute constant O(1), it can be ensured that

β(m1, · · · ,md) ≤ ε

An important aspect of the ε-approximation (2.30) based on (2.33) is whether or not

its solution is “close enough” to the solution of the original SOCP problem (2.29).

As it turns out, there are examples that can be constructed where (2.29) is

infeasible, while all problem of the form (2.31) are feasible. However, there is a a

simple sufficient condition that will ensure that the feasible sets of (2.29) and (2.31)are

“O(ε)-close” to each other (see Ben-Tal and Nemirovski (2001b), Proposition 4.1).

Thus, we have (2.30) being a good approximation of (2.29) provided that the feasible

sets of (2.29) and (2.31) are within O(ε) of each other.

2.4.2 Gradient Approximation of 3D general p-order
cones

The “lifted” polyhedral approximation of 3D quadratic cones, due to Ben-Tal

and Nemirovski (2001b), does not seem to be extensible to the general p-order cones

with p ∈ [1,+∞). In light of this, we develop a simple “gradient” approximation of the

3D p-cone K(3)
p by circumscribed planes. With an external polyhedral approximation

we create a convex hull that approximates the p-cone, thus allowing the use of linear

programming techniques for handling the pOCP problem (2.1). Next we demonstrate

the construction of a gradient polyhedral approximation to cone K(3)
p located in the

positive orthant of R3
+.
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In the positive quadrant of R2
+, the projection of the p-cone

xp + yp = zp0 (= const) (2.35)

can be parameterized using the polar coordinates as

x = z0ρ(θ) cos θ

y = z0ρ(θ) sin θ, θ ∈
[
0,
π

2

] (2.36)

Substituting the parameterization for x and y into the equality xp + yp = zp0 and

solving for ρ(θ) yields:

ρ(θ) =
z0

(cosp θ + sinp θ)1/p (2.37)

Therefore we have:

x = z0
cos θ

(cosp θ + sinp θ)1/p

y = z0
sin θ

(cosp θ + sinp θ)1/p
, θ ∈

[
0,
π

2

] (2.38)

Next, observe that the plane tangent to the surface zp = xp + yp of the p-cone at a

point (x0, y0, z0) ∈ R3
+ is given by

(z0)p−1z = (x0)p−1x+ (y0)p−1y.

Using the parametrization (2.38) of x0, y0, we arrive at the following expression for a

plane that is tangent to the p-cone xp + yp = zp at the polar angle θ:

z = x
cosp−1 θ

(sinp θ + cosp θ)
p−1
p

+ y
sinp−1 θ

(sinp θ + cosp θ)
p−1
p

, θ ∈
[
0,
π

2

]
.
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Then, a polyhedral approximation of the p-cone K(3)
p ⊂ R3

+ given by m + 1 circum-

scribed tangent planes can be written as

Ĥ(3)
p,m =

{
ξ ∈ R3

+

∣∣∣∣ ξ3 ≥ α
(p)
i ξ1 + β

(p)
i ξ2, i = 0, . . . ,m

}
(2.39)

where the coefficients α
(p)
i , β

(p)
i have the form

α
(p)
i =

cosp−1 θi

(cosp θi + sinp θi)
p−1
p

β
(p)
i =

sinp−1 θi

(cosp θi + sinp θi)
p−1
p

(2.40)

and 0 = θ0 < θ1 < · · · < θm−1 < θm = π
2

is a partition of the segment
[
0, π

2

]
. As

it is shown in Chapter 3, of particular importance is the special case of the gradient

approximation (2.39) where the parameters θi represent a “uniform” partition of[
0, π

2

]
:

θi =
πi

2m
, i = 0, . . . ,m. (2.41)

The following proposition establishes approximation quality for the uniform gradient

approximation (2.39)–(2.41) of the cone K(3)
p .

Proposition 4. The set Ĥ(3)
p,m (2.39)–(2.40) defined by the uniform partition (2.41)

is a convex polyhedral approximation of the p-cone K(3)
p that satisfies properties (H1)–

(H2) with approximation accuracy

ε =

{
O(m−2), for p ∈ [2,∞)

O(m−p), for p ∈ (1, 2)

Proof. Since the polyhedral set (2.39)–(2.40) is formed by intersection of halfspaces

tangent to the p-cone K(3)
p , (H1) is obviously satisfied.
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To demonstrate (H2), we need to show that a finite ε exists such that

ξ ∈ Ĥ(3)
p,m =⇒ ‖(ξ1, ξ2)‖p ≤ (1 + ε)ξ3 (2.42)

holds for any ξ ∈ Ĥ(3)
p,m. The accuracy in (2.42) can be chosen as the smallest ε that

satisfies:

ε ≥
∥∥∥∥(ξ1

ξ3

,
ξ2

ξ3

)∥∥∥∥
p

− 1.

for any ξ ∈ Ĥ(3)
p,m. Since we are concerned with an ordered pair

(
ξ1
ξ3
, ξ2
ξ3

)
, the problem

can be reduced to a two dimensional one by letting (x, y) =
(
ξ1
ξ3
, ξ2
ξ3

)
, thus reducing

the last inequality to

ε ≥ ‖(x, y)‖p − 1 (2.43)

where (x, y) belongs to the polygon

H′ =
{

(x, y) | 1 ≥ α
(p)
i x+ β

(p)
i y, i = 0, . . . ,m

}
From geometric considerations (see Figure 2.4), the approximation error will be

largest for vertices of the polygon H′. For a segment [θi, θi+1], with θ0 = 0 < θ1 <

· · · < θm−1 < θm = π
2
, define the largest approximation error on the segment as εi.

Thus, ε in (2.43) would be defined as:

ε = max
i=0,...,m

εi (2.44)

Consider the segment [θi, θi+1]. We construct the tangent lines to the p-curve xp+yp =

1 at the points (x1, y1) and (x2, y2) where:

x1 =
cos θi

(cosp θi + sinp θi)
1/p

y1 =
sin θi

(cosp θi + sinp θi)
1/p

x2 =
cos θi+1

(cosp θi+1 + sinp θi+1)1/p
y2 =

sin θi+1

(cosp θi+1 + sinp θi+1)1/p
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Figure 2.4: Gradient Approximation (graphical representa-
tion of ε).

correspond to the points on the p-curve at the polar angles θi and θi+1 respectively.

The equation of the tangent line to the p-curve xp + yp = 1 at the point (x1, y1) and

(x2, y2) is given by x(x1)p1 + y(y1)p−1 = 1 and x(x2)p−1 + y(y2)p−1 = 1 respectively.

The set of simultaneous equations:

x(x1)p−1 + y(y1)p−1 = 1

x(x2)p−1 + y(y2)p−1 = 1
(2.45)

can be solved to obtain the intersection, (x∗, y∗), of these two tangent lines:
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x∗ =
yp−1

2 − yp−1
1

(x1y2)p−1 − (x2y1)p−1

y∗ =
xp−1

1 − xp−1
2

(x1y2)p−1 − (x2y1)p−1

(2.46)

Thus, the vertex of H′ located within the segment [θi, θi+1] is determined by the

solution to (2.45) and has the form (2.46).

It can be seen from geometrical considerations that the approximation error εi

at a segment [θi, θi+1] is determined by the local curvature at this segment, and the

curvature of the p-curve is monotonic on
[
0, π

4

]
. Thus, the “local” approximation

errors εi will be largest at either the segment [θ0, θ1] =
[
0, π

2m

]
or [θm/2−1, θm/2] =[

π
4
− π

2m
, π

4

]
, where it can be assumed without loss of generality that m is an even

number.

Let us first consider the local approximation error ε0 at the segment
[
0, π

2m

]
.

Denoting π
2m

= t, t � 1, we consider the points (x1, y1) = (1, 0) and (x2, y2) =

(x2(t), y2(t)). Then, the vertex (x∗, y∗) of the polygonH′ within the segment [θ0, θ1] =[
0, π

2m

]
is given by

x∗(t) = 1

y∗(t) = cotp−1 t
((

1 + tanp t)
p−1
p

)
− 1
)
.

The asymptotic expression for y∗(t) at small t� 1 can be obtained as follows

y∗(t) ≈ t1−p
(

(1 + tp)
p−1
p − 1

)
≈ t1−p

(
1 +

(
p− 1

p

)
tp − 1

)
= t1−p

(
p− 1

p
tp
)

=
p− 1

p
t
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Then, the approximation error ε0 at the segment [θ0, θ1]

ε0 = ‖(x∗(t), y∗(t))‖p − 1

can be asymptotically estimated as

ε0 = (1 + (y∗)p)1/p − 1 ≈ 1 +
1

p
(y∗)p − 1

=
1

p
(y∗)p

≈ 1

p

(
p− 1

p
t

)p
so that, finally,

ε0 ≈
1

p

(
1− 1

p

)p ( π

2m

)p
= O(m−p) for m� 1.

The approximation error εm/2 at the segment [θm/2−1, θm/2] =
[
π
4
− π

2m
, π

4

]
can be

obtained in a similar manner as

εm/2 ≈
p− 1

8

( π

2m

)2

= O(m−2), for m� 1.

Thus, the uniform gradient approximation (2.39)–(2.41) satisfies (H2) with the ap-

proximation accuracy given by

ε ≈


p−1

8

(
π

2m

)2
, for p ≥ 2

1
p

(
1− 1

p

)p (
π

2m

)p
, for 1 < p < 2

(2.47)

The gradient polyhedral approximation (2.39)–(2.41) of the p-cone K(3)
p requires

much larger number of facets than Ben-Tal and Nemirovski’s lifted polyhedral approx-

imation (2.32) of of the quadratic cone K(3)
2 to achieve the same level of accuracy.
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However, as it is shown in Chapter 3, the special structure of the uniform gradient ap-

proximation (2.39)–(2.41) makes the corresponding LP approximations of the pOCP

problem (2.1) particularly amenable to a cutting plane decomposition algorithm.



www.manaraa.com

58

CHAPTER 3

A CUTTING PLANE ALGORITHM FOR POLYHEDRAL
APPROXIMATIONS OF P -ORDER CONIC PROGRAMMING

PROBLEMS

3.1 Introduction

In Chapter 2 we have presented the rationale for solving the p-order conic pro-

gramming problems

min c>x (3.1a)

s. t. Ax ≤ b (3.1b)∥∥D(k)x− f (k)
∥∥
pk
≤ h(k)>x− g(k), k = 1, . . . , K (3.1c)

by constructing their polyhedral approximations, effectively reducing the pOCP prob-

lem (3.1) to a LP of the form

min

c>x

∣∣∣∣∣ Ax ≤ b, H(Jk+1)
pk,mk


D(k)x− f (k)

h(k)>x− g(k)

u(k)

 ≥ 0, k = 1, . . . , K

 (3.2)

where the set

H(Jk+1)
pk,mk

ξ(k)

u(k)

 ≥ 0 (3.3)

defines a polyhedral approximation of the p-cone K(Jk+1)
pk ⊂ RJk+1

+ . A key strategy

that allows one to avoid polyhedral approximations of (3.1) that are exponentially

large in the dimensionalities (Jk+1) of the pk-conic constraints in (3.1) is the “tower-

of-variables” technique, which represents a (Jk+1)-dimensional p-cone as intersection
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of Jk−1 three-dimensional p-cones. (Alternatively, in the case when all pk are rational:

pk = rk/sk, one can use the SOCP reformulation of the pOCP problem (3.2) that will

require O(Jk log rk) three-dimensional second order cones to represent each (Jk + 1)-

dimensional pk-cone. We will compare the performances of both these methods in

Chapter 4.)

Nevertheless, this approach generally leads to a linear programming problem

(3.2) whose size is much larger than the size of the original pOCP problem (3.1);

on the other hand, the constructed LP approximation possesses a special structure

induced by the “tower-of-variables” transformation, which can be exploited to con-

struct an efficient solution procedure. Next we present a cutting-plane formulation

of the approximating problem (3.2) for the case when the approximation (3.3) of

(Jk + 1)-dimensional pk-cones has been constructed using the “tower-of-variables”

approach.

3.2 A Cutting Plane Formulation for Polyhedral
Approximations of pOCP Problems

For simplicity, we assume from now on that the pOCP problem (3.1) contains

a single p-order conic constraint (K = 1) of dimension 2d + 1, d ∈ Z+. Evidently,

the presented approach and obtained results are generalizable to a pOCP with K

pk-order conic constraints of general dimensions (Jk + 1) in a straightforward way.

Invoking the “tower-of-variables” transformation, we reformulate the pOCP problem
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(3.1) as follows:

min c>x (3.4a)

s. t. Ax ≤ b (3.4b)

w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

j = 1, . . . , 2d−`, ` = 1, . . . , d (3.4c)

w
(d)
1 ≤ h>x− g (3.4d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.4e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.4f)

Problem (3.4c) is an equivalent reformulation of the original pOCP problem (3.1)

using 2d − 1 three-dimensional p-order conic constraints. In accordance with our

polyhedral approximation solution approach, we replace each of the 3-dimensional

p-cones

w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

with its polyhedral approximation:

H(3)
p,m

w
(`)
j

u
(`)
j

 ≥ 0 (3.5)

where for given ` and j we denote w
(`)
j =

(
w

(`)
j , w

(`−1)
2j−1 , w

(`−1)
2j

)>
, and m is the parame-

ter of construction controlling the approximation accuracy. In such a way, the LP ap-

proximation (3.2) of the pOCP problem (3.1) that is based on the “tower-of-variables”

transformation and the polyhedral approximations (3.5) of three-dimensional p-cones
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can now be stated as follows:

min c>x (3.6a)

s. t. Ax ≤ b (3.6b)

H(3)
p,m

w
(`)
j

u
(`)
j

 ≥ 0, ` = 1, . . . , d j = 1, . . . , 2d−` (3.6c)

w
(d)
1 ≤ h>x− g (3.6d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, · · · , 2d (3.6e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.6f)

The linear programming problem (3.6) has a large number of constraints induced by

the polyhedral approximation (3.5). However, only a few of these constraints will

be binding at optimality. This, in turn, potentially allows one to solve the linear

programming problem (3.6) iteratively, by generating only those linear constraints

that comprise (3.6c) that are “necessary” to achieve optimality.

To this end, we want to construct a “cutting plane” reformulation of problem

(3.6) that would be amenable to iterative generation of linear constraints using a

Bender’s-type approach. Therefore, we replace the constraint (3.6c) with the following

set:

w
(`)
j ≥ min v3 (3.7a)

s. t. H(3)
p,m

v

y

 ≥ 0 (3.7b)

v1 ≥ w
(`−1)
2j−1 (3.7c)

v2 ≥ w
(`−1)
2j (3.7d)

v,y ≥ 0 (3.7e)



www.manaraa.com

62

where we suppress the indices ` and j of the auxiliary variables v and y in order to

unclutter the notation. The following simple fact is important for further develop-

ments:

Proposition 5. The linear programming problem in (3.7) is always feasible for any

w
(`−1)
2j−1 , w

(`−1)
2j ≥ 0.

Proof. For a given w
(`−1)
2j−1 , w

(`−1)
2j , consider v =

(
w∗, w

(`−1)
2j−1 , w

(`−1)
2j

)
where w∗ =

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p
.

Since, obviously, v ∈ K(3)
p , by property (H1) there exists y ≥ 0 such that H

(3)
p,m

v

y

 ≥
0. Therefore, the linear programming problem given by (3.7) is always feasible for

any w
(`−1)
2j−1 , w

(`−1)
2j .

Next we demonstrate that the set defined by (3.7) is a polyhedral approxima-

tion of the 3D p-cone w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

featuring the same approximation

accuracy as the set (3.6c). Namely, we have the following proposition:

Proposition 6. The set given by (3.7) in the space of variables

w
(`)
j =

(
w

(`)
j , w

(`−1)
2j−1 , w

(`−1)
2j

)
is a polyhedral approximation of the p-cone w

(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

with accuracy

εm, where εm is the accuracy of the the approximation (3.6c) (i.e. (H1) and (H2) are

satisfied with accuracy εm).

Proof. In order to show that (H1) is satisfied, consider some w
∗(`)
j ∈ K(3)

p , where

w
∗(`)
j =

(
w
∗(`)
j , w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)>
.

We need to show that such a w
∗(`)
j also satisfies (3.7). From the properties of

the polyhedral approximation H(3)
p,m of the p-cone K(3)

p , there exists u∗ such that
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H
(3)
p,m

w
∗(`)
j

u∗

 ≥ 0. This implies that
(
w
∗(`)
j ,u∗

)
is a feasible solution of the lin-

ear programming problem in (3.7). Thus, we have w
∗(`)
j ≥ v∗3 where (v∗,y∗) is

an optimal solution of the linear programming problem in (3.7). This implies that

w
∗(`)
j =

(
w
∗(`)
j , w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)>
belongs to the set defined by (3.7).

In order to show that (H2) is satisfied, consider any w
∗(`)
j that satisfies (3.7).

Let (v∗,y∗) be the corresponding optimal solution of the linear programming problem

(3.7). By property (H2) of the approximation H(3)
p,m of K(3)

p we have that ‖(v∗1, v∗2)‖p ≤

(1 + εm)v∗3 and

∥∥∥(w∗(`−1)
2j−1 , w

∗(`−1)
2j

)∥∥∥
p
≤ ‖(v∗1, v∗2)‖p ≤ v∗3(1 + εm) ≤ w

(`)
j (1 + εm)

Therefore, we have that w
∗(`)
j (1 + εm) ≥

∥∥∥(w∗(`−1)
2j−1 , w

∗(`−1)
2j

)∥∥∥
p

which means that we

have found εm so that (H2) is satisfied.

To develop a cutting-plane representation of the approximating problem (3.6),

let us now rewrite the LP in (3.7) as follows:

min v (3.8a)

s. t. H̃m

v
y

 ≥


0

w
(`−1)
2j−1

w
(`−1)
2j

 (3.8b)

v ≥ 0, y ≥ 0 (3.8c)

where H̃m is reformulated so that y includes the variables v1 and v2. Then, the dual
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of problem (3.8) can be written as follows:

max
(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π (3.9a)

s. t. H̃>mπ ≤

1

0

 (3.9b)

π ≥ 0 (3.9c)

The feasible set of the dual problem in (3.9) can be represented as a sum of the convex

hull of its vertices π̂i and a (convex) cone generated by its extreme rays, or directions

π̄k (see, for instance, Prékopa, 1995). Namely, any π that is feasible to (3.9) we can

write as

π =
∑
i∈Pm

λiπ̂i +
∑
k∈Qm

µkπ̄k,
∑
i∈Pm

λi = 1, λi ≥ 0, and µk ≥ 0 (3.10)

where Pm is the set of extreme points of the feasible set

π

∣∣∣∣ H̃>mπ ≤

1

0

 ,π ≥ 0

 (3.11)

of the dual problem (3.9) and Qm is the set of its extreme rays.

Proposition 7. Observe that any extreme ray π̄k, k ∈ Qm of the set (3.11) must

satisfy

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̄k ≤ 0

for any w
(`−1)
2j−1 , w

(`−1)
2j ≥ 0.

Proof. To see this, assume that the contrary holds for some k ∈ Qm and select the

corresponding µk very large. As µk →∞ the dual problem (3.9) becomes unbounded.
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With this, the primal problem would become infeasible. However, by Proposition 5 we

know that the primal problem is feasible for any non-negative w
(`−1)
2j−1 and w

(`−1)
2j .

Because of this observation, we can now replace (3.7) with the following:

w
(`)
j ≥

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̂i, i ∈Pm (3.12)

since the maximum of the dual problem will be achieved at some vertex π̂i of its

feasible set (3.11). This leads to the following “cutting plane” formulation of the LP

approximation to the pOCP problem (3.1):

min c>x (3.13a)

s. t. Ax ≤ b (3.13b)

w
(`)
j ≥

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̂i, i ∈Pm, j = 1, . . . , 2d−`, ` = 1, . . . , d (3.13c)

w
(d)
1 ≤ h>x− g (3.13d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.13e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.13f)

where constraints (3.13c) are amenable to iterative generation and thus can be viewed

as “cutting planes” that “cut off” the portions of the feasible region where an optimal

solution cannot be achieved.

In the next section we present the corresponding cutting plane algorithm for

solving problem (3.13) iteratively.
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3.3 A Cutting Plane Algorithm for Polyhedral
Approximations of p-Order Conic Program-
ming Problems

Assume without loss of generality that problem (3.13) is bounded, and consider the

master problem corresponding to the cutting plane formulation (3.13):

min c>x (3.14a)

s. t. Ax ≤ b (3.14b)

w
(`)
j ≥ σi,ν−1w

(`−1)
2j−1 + τi,νw

(`−1)
2j , i = 1, . . . , C

(`)
j ,

j = 1, . . . , 2d−`, ` = 1, . . . , d (3.14c)

w
(d)
1 ≤ h>x− g (3.14d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.14e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.14f)

where σi,ν−1 and τi,ν stand for the last two components π̂ν−1 and π̂ν of the vector

π̂i ∈ Rν . Let (x∗,w∗) be an optimal solution to the master problem (3.14) after a

given iteration (note that if (3.14) is infeasible, then (3.13) is infeasible too, and the

procedure stops). Then, for any ` = 1, . . . , d, j = 1, . . . , 2d−` solve the subproblem:

max
(
0, w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)
π (3.15a)

s. t. H̃>mπ ≤

1

0

 (3.15b)

π ≥ 0 (3.15c)

and, given its optimal solution π∗ = π
∗(`)
j check if the condition

w
∗(`)
j ≥

(
0, w

(`−1)∗
2j−1 , w

(`−1)∗
2j

)
π
∗(`)
j (3.16)
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is satisfied. If condition (3.16) is violated for some `, j then we add a new constraint

(3.14c) for the variable w
(`)
j by incrementing the corresponding counter of constraints

in (3.14c): C
(`)
j = C

(`)
j + 1, and setting

σ
(`)
j,i′ = π

∗(`)
j,ν−1, τ

(`)
j,i′ = π

∗(`)
j,ν for i′ = C

(`)
j (3.17)

After checking condition (3.16) for all variables w
(`)
j , the master problem (3.14) is

augmented with new constraints and is solved again. If (3.16) holds for all variables

w
(`)
j , and thus no new cuts are generated during the given iteration, the current

solution x∗,w∗ of the master problem is optimal for the original LP approximation

problem (3.13). In such a way, the proposed cutting-plane procedure obtains an

optimal solution, if it exists, of the original LP approximation problem (3.13) after a

finite number of iterations with, perhaps, some anticycling scheme employed.

A starting solution for the cut generation procedure can be constructed, for

example, by solving the master problem (3.14) with constraints

w
(`)
j ≥ w

(`−1)
2j−1 , w

(`)
j ≥ w

(`−1)
2j , j = 1, . . . , 2d−`, ` = 1, . . . , d,

in place of constraints (3.14c). Indeed, note that inequality

w
(`)
j ≥

∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥
p

implies

w
(`)
j ≥ max

{
w

(`−1)
2j−1 , w

(`−1)
2j

}
.

More efficient methods of generating an initial solution can be suggested by exploiting

the particular structure of the feasible region of the pOCP problem (3.1).
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3.4 Cut Generation Efficiencies

Effectiveness of the described cutting-plane scheme depends, in part, on how

fast the set of cuts (3.14c) can be updated. Here we demonstrate that the gradient

approximation (2.39)–(2.40), introduced in Chapter 2, admits quite an efficient gen-

eration of cuts. Indeed, when the gradient polyhedral approximation (2.39)–(2.40) is

used in (3.5), problem (3.9) takes the form

max w
∗(`−1)
2j−1 πm+1 + w

∗(`−1)
2j πm+2

s. t.
m∑
i=0

α
(p)
i πi ≥ πm+1

m∑
i=0

β
(p)
i πi ≥ πm+2

m∑
i=0

πi ≤ 1

πi ≥ 0, i = 0, . . . ,m+ 2

(3.18)

which is the dual of the problem obtained from (3.7) by using the gradient approxi-

mation (2.39)–(2.40)

min u3

s. t. u3 ≥ α
(p)
i u1 + β

(p)
i u2, i = 0, . . . ,m,

u1 ≥ w
∗(`−1)
2j−1 ,

u2 ≥ w
∗(`−1)
2j ,

u1, u2, u3 ≥ 0.

(3.19)

Clearly, an optimal solution of problem (3.18) is given by

π∗m+1 = α
(p)
i∗ , π∗m+2 = β

(p)
i∗ , and π∗i =

 1, i = i∗,

0, i ∈ {0, . . . ,m}\i∗,
(3.20a)
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where the index i∗ is such that

i∗ ∈ arg max
i=0,...,m

{
α

(p)
i w

∗(`−1)
2j−1 + β

(p)
i w

∗(`−1)
2j

}
. (3.20b)

In other words, the cut-generating problem (3.15) reduces to selection of a maximum

element in a set of m + 1 numbers, and therefore can be solved in linear O(m)

time. However, as we show next, the special structure contained in the gradient

approximation (2.39)–(2.40) and, correspondingly, in problem (3.15), allows for a

more efficient solution.

Proposition 8. Consider the pOCP problem (3.1) with K conic constraints of dimen-

sion Jk+1 and order pk ∈ (1,∞). Assume that each conic constraint is approximated

using the “tower-of-variables” approach and the gradient polyhedral approximation

(2.39)–(2.40) with parameter of approximation m. Then, during an iteration of the

decomposition scheme described above, new cuts can be generated in O
(∑

k Jk logm
)

time. If the “uniform” polyhedral approximation (2.41) is used, the cuts can be gen-

erated in a constant O
(∑

k Jk
)

time.

Proof. To prove the first statement of the proposition, we consider the sequence

γi = ξ∗1 α
(p)
i + ξ∗2 β

(p)
i , i = 0, . . . ,m (3.21)

for some non-negative ξ∗1 , ξ
∗
2 ≥ 0 such that ξ∗1 + ξ∗2 > 0 (the case when both ξ∗1 =

ξ∗2 = 0 is trivial). Let us call a sequence {cn} strictly quasiconcave if it is generated

by a continuous strictly quasiconcave function f(·): cn = f(tn), where tn−1 < tn.

An important characteristic of a strictly quasiconcave function is that every local

maximum is also its global maximum (see, e.g., Bazaraa et al., 2006), hence every

local maximum of a strictly quasiconcave sequence will be its global maximum as
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well. It is easy to see that {γi} is a strictly quasiconcave sequence. Indeed, using

the definition (2.40) of the coefficients α
(p)
i , β

(p)
i as functions of the polar angle θ, the

sequence γi (i = 0, . . . ,m) can be viewed as being generated by the function

f(θ) = ξ∗1α
(p)(θ) + ξ∗2β

(p)(θ)

= ξ∗1 (cosp θ + sinp θ)
1−p
p cosp−1 θ + ξ∗2 (cosp θ + sinp θ)

1−p
p sinp−1 θ (3.22)

evaluated at discrete points 0 ≡ θ0 < θ1 < . . . < θm ≡ π
2
. The derivative of the

function f(θ) is

f ′(θ) = (p− 1)
sinp−1 θ cosp−1 θ

(cosp θ + sinp θ)2−1/p

(
−ξ∗1
cos θ

+
ξ∗2

sin θ

)
, p > 1. (3.23)

Clearly, function f(θ) is strictly quasiconcave on [0, π/2] since it is continuous and

is either monotonic on [0, π/2] (when one of the parameters ξ∗1 , ξ
∗
2 is zero) or has a

unique global maximum at

θ∗ = arctan(ξ∗2/ξ
∗
1). (3.24)

Thus, the function f(θ) has a unique global maximum (e.g, either θ∗, or 0, or π
2
),

which can be found by solving the equation f ′(θ) = 0 using binary search.

Similarly, although the maximum of the corresponding sequence f(θi) = γi (i =

0, . . . ,m) may be not unique (i.e., two adjacent elements may have the same maximal

value), the largest element(s) in the sequence can be determined using a binary search

that requires O(log2m) time. Consequently, generation of new cuts for the polyhedral

approximation (2.39)–(2.40) of a p-order conic constraint in RJk+1 requires solving of

Jk − 1 instances of problem (3.18), which means that in the case of K pk-order conic

constraints, cut generation for the gradient polyhedral approximation (2.39)–(2.40)

can be done in O
(∑

k Jk logm
)

time.



www.manaraa.com

71

The computational time needed to determine the maximum element(s) of se-

quence (3.21) can be improved drastically if the points θi(i = 0, . . . ,m) are uni-

formly spaced on [0, π/2]: θi = πi
m

. Then, the index i∗ of the maximum element(s) of

γi(i = 0, . . . ,m) is determined from

i∗ ∈ arg max
{
ξ∗1α

(p)
t + ξ∗2β

(p)
t , ξ∗1α

(p)
t+1 + ξ∗2β

(p)
t+1,

}
, where t =

⌊
2m

π
arctan

ξ∗2
ξ∗1

⌋
(3.25)

Indeed, given that the constants γi represent the values of function f(θ) at equally

spaced points θi = πi
2m

, the integer t in (3.25) identifies the segment [θt, θt+1] =[
πt
2m
, π(t+1)

2m

]
that contains the extremum θ∗ (3.24) of f(θ). Hence, the largest element

of sequence γi is selected among the values of function f(θ) evaluated at the endpoints

of the segment [θt, θt+1]. Note that (3.21) can have at most two optimal solutions,

which corresponds to the case of g(θt) = g(θt+1).

Thus, a solution of (3.18) can be obtained in a constant O(1) time that does not

depend on the number of facets m in the uniform gradient polyhedral approximation

(2.39)–(2.41). Given that each conic constraint of order pk and dimensionality Jk + 1

requires Jk−1 such operations, generation of new cuts in problem (3.14) that employs

a uniform gradient polyhedral approximation (2.39)–(2.41) requires O
(∑

k Jk
)

time.

The significance of Proposition 8 lies in the fact that increasing m, and, corre-

spondingly, the quality of the uniform gradient approximation (2.39)–(2.41) , comes

at no cost with regard to the time needed to generate new cuts during an iteration

of the decomposition scheme described above. Of course, this does not mean that

the number of iterations needed to obtain an optimal solution of (3.14) (if it exists)

remains constant with respect to m.
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Observe also that when the polyhedral approximation (2.39)–(2.40) is employed,

the specific form (3.20) of optimal solutions of the subproblem (3.15) allows one to

write the cuts (3.14c) in the master problem (3.14) in the form

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j , i ∈ C(`)

j , j = 1, . . . , 2d−`, ` = 1, . . . , d. (3.26)

Here C(`)
j are subsets of {0, . . . ,m} and contain the indices i of cuts that have been

generated for the variable w
(`)
j . Knowing the exact values of the coefficients in cuts

(3.14c) without having to solve problem (3.15), one can potentially improve the nu-

merical accuracy of the cutting-plane scheme.
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CHAPTER 4

CASE STUDIES: PORTFOLIO OPTIMIZATION WITH P -ORDER
CONIC CONSTRAINTS

4.1 Introduction

In this chapter we discuss the computational efficiency of the developed al-

gorithmic approaches to solving p-order conic programming (pOCP) problems. In

particular, we will be comparing the cutting plane algorithm for polyhedral approxi-

mations of pOCP problems developed in Chapter 3 with the method of reformulating

pOCP problems as second-order conic programming (SOCP) in the case of rational

values of the parameter p presented in Chapter 2. In addition, we will consider the

computational efficiency of the “full” LP implementations of the polyhedral approx-

imations of pOCP problems. The computational comparisons will be conducted on

an example of a portfolio optimization problem with p-order conic constraints.

Later, we will consider methodological aspects of the coherent and deviation

measures that involve higher moments of loss distributions, such as HMCR, SMCR,

HMD, and SMD measures (see Chapter 1). We will be looking at how the risk mea-

sures based on higher moments perform when compared to each other and to more

conventional risk measures such as the CVaR, and the Mean-Variance models. This

comparison will be done at a later date after updating the current data set to incorpo-

rate the most recent market volatility that was experienced with the current market

melt down. In addition, we will consider performance of cardinality-constrained port-

folios based on the higher moment risk measures.
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4.2 Computational Performance of p-Order
Conic Programming Algorithms

In this section we conduct numerical comparisons of the approaches discussed

in Chapters 2 and 3 to solving problems of type (2.1) on an example of a portfolio

optimization problem with p-order conic constraint.

Tracing back to Markowitz (1952, 1959), portfolio optimization problems are

typically stated in the form where portfolio (investment) risk is minimized while re-

quiring a certain level of expected return on the investment, or, alternatively, the

portfolio’s expected return is maximized subject to a constraint on portfolio risk. Yet

another formulation is employed in the literature where a “composite” objective rep-

resenting a linear combination of risk and reward (e.g., expected return) is optimized

(the so-called mean-risk models, see, e.g., Ogryczak and Ruszczyński, 1999, 2001,

2002). The particular formulation is usually chosen depending on the preferences of

the decision-maker (investor) and the application at hand; Krokhmal et al. (2002a)

discuss the conditions at which all three formulations are equivalent.

The portfolio selection models that will be employed in the case study have the

general form:

min
x

R(−r>x) (4.1a)

s. t. e>x = 1, (4.1b)

Er>x ≥ r0, (4.1c)

x ≥ 0, (4.1d)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)> is the

random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The risk mea-

sure R(X) in (4.1a) can be taken to be HMCR, SMCR, etc., of the negative portfolio
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return, −r>x. Constraint (4.1b) is the budget constraint while (4.1d) together with

(4.1b) ensure that all of the available funds are invested. Constraint (4.1c) imposes

a minimal required level r0 of expected return of the resulting portfolio.

For the sake of simplicity and in order to conduct a useful comparison of the

effects of the risk measure selection in (4.1a) we purposely do not include any ad-

ditional trading or institutional constraints such as transaction cost, liquidity con-

straints, etc.. In keeping with what is traditionally done in portfolio optimization

problems, the distribution of random returns ri of asset i is modeled sing a set of J

discrete equiprobable scenarios {ri1, · · · , riJ}.

With the risk measure R(X) replaced with the HMCRp,α(X) measure, the port-

folio selection problem for our case study is transformed into a linear programming

problem with a single p-order conic constraint (4.2e)

min η +
J−

1
p

1− α
t (4.2a)

s. t.
n∑
i=1

xi = 1, (4.2b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (4.2c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (4.2d)

t ≥ (wp1 + · · ·+ wpJ)1/p, (4.2e)

xi ≥ 0 i = 1, · · · , n, (4.2f)

wj ≥ 0 j = 1, · · · , J (4.2g)

Problem (4.2) will be solved through its various polyhedral approximations (e.g.,

“lifted” Ben-Tal and Nemerovki’s approximation, “gradient” approximation) as well

as the “exact” SOCP reformulation in the case of rational p.
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Remark 2. In the context of benchmarking the LP approximations of the pOCP

portfolio optimization problem (4.2) against its SOCP-based implementation in the

case of a rational p, the adopted formulation of the portfolio optimization problem

(4.1), (4.2) has several notable characteristics. Firstly, the conic constraint (4.2e) is

feasible as long as constraints (4.2b)–(4.2d) are feasible; in other words, feasibility of

problem (4.2) is determined by the budget constraint and constraint on the expected

return. Secondly, the rather simple structure of linear constraints (4.2b)–(4.2d) that

correspond to linear constraints Ax ≤ b of the general pOCP problem (2.1) allows

for placing more weight on the efficiency of handling of p-order constraints by a

particular computational scheme, rather than on solver’s efficiency in handling of

linear constraints Ax ≤ b, in the interpretation of the computational results that

follows next.

Remark 3. Note that with the addition of the constraint

η =
1

J

J∑
j=1

n∑
i=1

rijxi

we can use the construct of problem (4.2) to implement the SMCR risk measure. This

reduces the problem by one variable and as such its effects on the computation time

can be considered negligible. Therefore we proceed with the computational results for

the HMCR model as shown in (4.2).

4.2.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at computation time comparisons,
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for scenario generations we used 10-day historical returns over J = 28, · · · , 213 overlap-

ping periods, calculated using daily closing prices from October 30, 1998 to January

18, 2006. The particular sizes of the scenario set has been chosen to accommodate

the linear approximation techniques in problem (3.6), and the sizes of the considered

scenario sets were limited only by availability of the data. From this set of S&P500

stocks, we selected n = 50 instruments by picking those with the highest value of

kurtosis of biweekly returns, calculated over a specific period.

4.3 Computation Time Comparisons

In this section we present the computational efficiency, as measured by the aver-

age running time,in seconds, of the developed algorithms for solving pOCP problems

on the example of the portfolio optimization problem with p-order conic constraint

(4.2). We compare the solution time of the cutting plane algorithm (CPA), the second

order conic programming (SOCP) reformulation, the full algorithm implementation

(FA) of the “tower of variables” construction, the Ben-Tal–Nemirovski (BN) lifted

polyhedral model for p = 2 and the gradient approximation (GA) with p = 2. For

CPA, SOCP, and GA formulations, the value of the parameter p in (4.2) varied as

p = 2, 3, 4, 5; the implementation based on Ben-Tal and Nemirovski’s (BN) approxi-

mation applies only to p = 2. The confidence level α and minimum required expected

return have been fixed at α = 0.9 and r0 = 0.5% for all algorithms.

A total of 76 instances of problem (4.2) corresponding to 76 bi-weekly rebal-

ancing periods from December, 2002 to January 2006 have been solved for each im-

plementation and each scenario size.

The computer that was used to perform the scenario runs was a Dell XPS

with a Dual Core Pentium processor and 2GB of RAM. The machine was running
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Windows XP with CPLEX 10.0.0. The ILOG Concert Technology implementation

of the CPA algorithm utilized the CPLEX linear programming solver, and the SOCP

implementation used CPLEX Barrier solver. The BN and GA implementations were

done using AMPL. The accuracy of the polyhedral approximations were chosen at

ε < 10−5 that is consistent with the standard CPLEX computation accuracy.

Both the GA and CPA implementations are solving the following linear approx-

imation of the pOCP portfolio optimization problem (4.2) based on the “uniform”

gradient approximation developed in Chapter 2:

min η +
1

1− α
t
p
√
J

(4.3a)

s. t. (4.2b), (4.2c) and (4.2d) (4.3b)

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j i = 0, . . . ,m,

` = 0, . . . , d, j = 1, . . . , 2d−` (4.3c)

w
(d)
1 = t (4.3d)

w
(0)
j = wj, j = 1, · · · , J (4.3e)

xi ≥ 0 i = 1, · · · , n, (4.3f)

w
(`)
j ≥ 0 ` = 0, · · · , d, j = 1, · · · , 2d−`. (4.3g)

where the coefficients α
(p)
i , β

(p)
i have the form (2.40).

For our computational comparisons, we use this idea to solve the linear pro-

gramming problem as either a “full” linear programming problem that contains all of

the constraints or through the cutting plane algorithm which generates the necessary

constraints for the optimization problem to reach optimality.

Here we would also like to discuss generation of the starting solution to the

master problem (3.14) that is solved as a part of the cutting plane implementation of
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the LP (4.3): note that this problem is unbounded when constraints (3.14c) that in

the case of uniform gradient approximation have the form

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j

are absent (i.e., when C(`)j = ∅ for all variables w
(`)
j ). An initial feasible solution to

the master problem of (4.3) can be constructed as follows. First, a vector x∗ that

satisfies (4.2b) and (4.2d) is selected (this can be done by distributing portfolio weights

equally among all instruments whose expected return exceeds r0), and then value η∗

is chosen in such way that there is at least one w
∗(0)
j = max

{
0,
∑

j rijx
∗
i −η∗

}
> 0 for

both j ≤ J/2 and j > J/2. This last condition ensures that, when cuts for variables

w
(`)
j are generated by solving (3.18), the coefficients α

(p)
i and β

(p)
i in the cut for the

“top” variable w
(d)
1 are both non-zero, which, in turn, guarantees that the resulting

master problem will not be unbounded.

Alternatively, one can start with a master problem in which the set of cuts C(`)
j

for each variable w
(`)
j is non-empty: e.g., C(`)

j =
{
bm/2c

}
. Evidently, in this case the

master problem will be bounded and feasible as long as constraints (4.3b) and (4.3c)

are feasible. The downside of this method is that one starts with a larger problem

as compared to the case described above; on the other hand, it does not require the

introduction of new columns into problem (4.3) during iterations. In the context of

the present case study, the last method turned out to be more efficient by requiring

fewer iterations and reaching an optimal solution of (4.3) faster.

4.3.1 Computational Results for p = 2

In this section we compared the numerical efficiency of the approximate and

exact methods of solving the portfolio optimization problem (4.2) with second-order
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conic constraint (p = 2). Precisely, we compared the full LP polyhedral approxima-

tions of (4.2) based on the Ben-Tal and Nemirovski’s lifted approximation (BN), the

uniform gradient approximation (GA), the cutting-plane algorithm implementation

(CPA) of the GA linear programming problem, and the native SOCP implementation

of (4.2) with p = 2.

As expected, the worst computational performance was demonstrated by the

gradient-based GA polyhedral approximation implemented as a “full” LP problem.

The more efficient BN implementation that relies on the lifted Ben-Tal and Ne-

mirovski’s approximation clearly outperformed the simpler GA implementation.

The results of the computational studies are represented in Figure 4.1 and in

Table 4.1, which report average running times in seconds for the four algorithms (BN,

GA, CPA, SOCP) applied to problem (4.2) with p = 2.

One of the unexpected results observed during this computational comparison

is that the SOCP implementation was outperformed by the polyhedral approxima-

tion that employs the cutting plane (CPA) algorithm. This can be attributed to

some inefficiencies in the current CPLEX barrier solver. We will further check this

particular result by running the CPA implementation against the “native” SOCP im-

plementation using MOSEK’s more efficient primal-dual interior point SOCP solver

(see Figure 4.2).

We would also like to mention that the solutions to the portfolio optimization

problem (4.2) obtained by different algorithms were consistent up to the specified

approximation accuracy.
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Figure 4.1: Average runing times (in seconds) for the CPA,
BN and GA approximations and the SOCP reformulation
for p = 2.

Figure 4.2: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
using the MOSEK solver.



www.manaraa.com

82

J BN CPA GA

256 0.438 0.040 4.133

512 1.472 0.156 13.332

1024 5.347 0.671 74.092

2048 15.487 2.231 103.860

4096 47.067 4.953 510.181

8192 59.892 5.469 910.035

Table 4.1: Average running times (in seconds) for the BN,
GA, and CPA approximations of problem (4.2) with p = 2,
α = 0.9, and r0 = 0.05%.

4.3.2 Computational Results for p 6= 2

The previous subsection discussed numerical comparisons for the case p = 2.

Our main interest, however, is in the case p 6= 2. Given the results of the p = 2

comparisons, it is evident that the most efficient methods (at least in application

to the portfolio optimization problem (4.2)) are represented by the cutting plane

algorithm (CPA) applied to the uniform polyhedral approximation of (4.2), and its

SOCP reformulation. Thus, in this section we discuss the computational performance

of these two methods in application to the pOCP problem (4.2) with the values of

parameter p varied as p = 3, 4, and 5. The SOCP reformulation of the pOCP problem

(4.2) was based on the pOCP→SOCP transformation for rational values of p that has

been presented in Chapter 2. Other than this, the setup of the numerical experiments

has remained the same as in the previous subsection.

The average running times of the CPA and SOCP implementations on 76 in-

stances of the portfolio optimization problem (4.2) are reported in Figures 4.3 – 4.5



www.manaraa.com

83

Figure 4.3: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 3.

and Table 4.2.

The main conclusion of this computational study is that the developed cutting

plane algorithm (CPA) as applied to the uniform gradient approximation of pOCP

problem consistently outperforms the corresponding interior-point algorithm based

on “exact” SOCP reformulation of the problem.

We believe that the following factors can be contributing to the observed dif-

ferences in efficiencies of the polyhedral approximation/cutting plane procedure and

the SOCP-based solution approach. First, the specific structure of the uniform gradi-

ent approximations of p-cones developed in Chapter 2 allows for generating the cuts

in constant time that does not depend on the accuracy of approximation, i.e. the

number of facets that are used to approximate each 3D p-cone (see Proposition 8).

This, coupled with the “warm-start” capabilities of the simplex LP solver that
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p=3 p=4 p=5

J CPA SOCP CPA SOCP CPA SOCP

256 0.034 0.67 0.034 0.636 0.033 0.726

512 0.109 3.485 0.103 3.416 0.103 3.68

1024 0.407 6.979 0.388 7.409 0.375 5.619

2048 1.712 9.45 1.645 9.153 1.582 14.85

4096 4.026 16.655 3.78 16.886 3.593 29.592

8192 5.546 33.692 5.048 40 4.837 77.637

Table 4.2: Average running times (in seconds) for the CPA
approximation and SOCP reformulation of problem (4.2)
with p = 3, 4, 5, and α = 0.9, r0 = 0.05%.

Figure 4.4: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 4.
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Figure 4.5: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 5.

Figure 4.6: Average running times (in seconds) of the cut-
ting plane algorithm for p = 2, 3, 4 and 5.
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are utilized during the iterative cutting plane procedure, can be considered as major

factors in the superior computational performance of the CPA algorithm.

The reasons for relatively poor performance of the SOCP-based algorithms may

include the fact that, in general, most current SOCP solvers do not perform as well

on instances of SOCP problems with a large number of quadratic conic constrains, as

compared to problems with a few (but possibly high-dimensional) cones. Secondly,

the inferior computational results may be due to possible performance limitations of

the CPLEX Barrier solver.

In order to verify the last assumption regarding the computational efficiency of

the CPLEX barrier solver we also used the MOSEK solver, with an interior-point al-

gorithm, to determine the solution time of the SOCP problem. We saw no marked im-

provement in solution time over the cutting plane algorhtim when using the MOSEK

solver in conjunction with the SOCP reformulation (see Figure 4.2).

Finally, we discuss the performance of the cutting plane algorithm at various

p = 2, 3, 4 and 5 (see Figure 4.6). Namely, we see that for larger values of p, the

computational time of the cutting plane algorithm generally decreases. This can be

attributed to the fact that as p increases the pcone approaches the polyhedral p =∞

cone, which can be natively handled by linear constraints.

4.4 Conclusions

In this chapter we conducted numerical experiments so as to determine the

computational efficiency of the developed methods for solving pOCP problem on

the example of a portfolio optimization problem with p-order constraints of small to

medium dimensionality. The main conclusion of this case study is that the proposed

approach based on polyhedral approximations of p-cones and subsequent solving of the
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resulting LP problem using a cutting plane algorithm turned out to be quite efficient.

Namely, on the type and dimensionality of problems considered in this case study,

the cutting plane algorithm that is based on gradient polyhedral approximations

outperformed the “exact” SOCP implementations of the original pOCP problems.

This can be attributed to two factors: first, the efficiency of cut generation procedure

that was employed in the cutting plane algorithm (recall that in Chapter 3 we showed

that for uniform gradient approximations the cuts can be generated in a constant time

that does not depend on the accuracy of approximation). The second key factor that

allowed the approximate cutting-plane implementation to outperform the interior-

point SOCP solver seems to be the “warm-start” capability of linear programming

solvers.

In addition, we note that the solution times for cutting plane algorithm seem

to improve as the value of the parameter p increases. This can be explained by the

fact that for large p, the corresponding p-cones become very close to the p =∞ cone,

which can be handled using linear programming techniques “natively”.
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CHAPTER 5

MIXED INTEGER P -ORDER CONIC PROGRAMMING

5.1 Introduction

Continuing our work within the general theme of p-order conic programming

problems and the corresponding stochastic programming models, we now extend the

results obtained in the context of polyhedral approximations for p-order conic pro-

gramming problems (Chapters 2 and 3) to mixed integer pOCP problems, i.e. linear

problems with p-order conic constraints where some of the variables are restricted to

be integer-valued. At the final stages of our research endeavor into risk optimization

with p-order conic constraints, we will conduct a case study intended to elucidate the

methodological advantages (and disadvantages) of using the various risk measures

that involve higher moments of loss distributions and can be incorporated in stochas-

tic optimization models using p-cone constraints. To estimate the practical “merits”

of decision models based on p-order conic programming, we will conduct a simulated

“out-of-sample” portfolio optimization case study using real-life financial data. Both

continuous and discrete models will be considered.

5.2 Mixed Integer p-Order Conic Programming
Problems

Discrete decision making models, where decision vector(s) are required to be

integer-valued are among some of the most difficult yet important problems in op-

erations research and management science. In this context, we are considering the

mixed-integer version of the general pOCP problem (2.1), where some decision vari-

ables may be restricted to integer-only values. By denoting the integer-valued part
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of the decision vector as y ∈ Zm, and the real-valued components of the decision

vector as x ∈ Rn, we formulate the general mixed integer p-order conic programming

problem (MIpOCP) as follows:

max c>x + d>y (5.1a)

s. t. Dx + Ey ≤ f (5.1b)

‖Ax + By + e‖p ≤ a>x + b>y + e0 (5.1c)

x ∈ Rn (5.1d)

y ∈ Zm (5.1e)

where, for simplicity, it can be assumed that only a single p-order conic constraint

(5.1c) is present. Our goal is to develop an efficient exact (e.g., branch-and-bound)

solution algorithm for the MIpOCP problem (5.1). The proposed approach to the

MIpOCP problem follows the work of Vielma, Ahmed, and Nemhauser (2008) who

developed a branch-and-bound algorithm for solving mixed integer SOCP problems.

To address the MIpOCP problem (5.1), we assume that the cone order p is a

rational number: p ∈ Q, (i.e. p = r
s
, r, s ∈ Z+). With this assumption in place, we can

reformulate the p-cone constraint(5.1c) as a set of 3 dimensional second order conic

constraints and complemented linear constraints using the techniques developed in

Chapter 2. A key property of this transformation that was established in Proposition

2.2 is that the number of second order conic constraints necessary to represent a p-

cone of rational order with dimension J + 1 is equal to O(J log r). In such a way, the

MIpOCP problem (5.1) can be reformulated as a mixed integer second-order conic
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programming problem (MISOCP) as follows:

max c>x + d>y (5.2a)

s. t. Dx + Ey ≤ f (5.2b)

Qx + Ty + Su ≤ 0 (5.2c)∥∥A(i)x + B(i)y + C(i)u + e(i)
∥∥

2
≤ a(i)>x + b(i)>y + h(i)>u + e

(i)
0 , i ∈ Ir,s

(5.2d)

x ∈ Rn, y ∈ Zm, u ∈ Rν (5.2e)

where |Ir,s| = O(J log r). Next, a polyhedral approximation of (5.2) is formed by

replacing each quadratic cone by its “lifted” polyhedral approximation due to Ben-

Tal and Nemirovski (2001b) (MILPPBN) or its gradient approximation (MILPPGA),

resulting in the following mixed integer linear programming problem:

max c>x + d>y (5.3a)

s. t. Dx + Ey ≤ f (5.3b)

Qx + Ty + Su ≤ 0 (5.3c)

H(3)
m


A(i)x + B(i)y + C(i)u + e(i)

a(i)>x + b(i)>y + h(i)>u + e
(i)
0

v(i)

 ≥ 0, i ∈ Ir,s (5.3d)

x ∈ Rn, y ∈ Zm, u ∈ Rν , v ∈ Rκm (5.3e)

Following Vielma, Ahmed, and Nemhauser (2008), the branch-and-bound al-

gorithm for problem (5.2) solves a continuous relaxation of the mixed integer linear

program (5.3) at each node of the branch-and-bound tree. If an integer-valued solu-

tion is found, its feasibility to (5.2) is tested by solving the corresponding continuous
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relaxation of (5.2) at this node. If the current solution is, despite integrality, infeasi-

ble to the continuous relaxation of (5.2), further branching is performed on this node.

This will be looked at further in the Case Studies chapter and the results will be

compared with that of the MISOCP reformulation. We will also look at the portfolio

performance as compared to the traditional Mean-Variance and CVaR risk measures.

We will now look at the various ways in which we can create the continuous linear re-

laxation of our MIpOCP problem by using one of the two polyhedral approximations

that we are familiar with from Chapter 2.

5.3 Polyhedral Approximations of the MIpOCP
Problem

As stated above in problem (5.2), the MIpOCP problem can be reformulated

as a MISOCP problem with O(J log r) second order cones. Since the Branch and

Bound algorithm that will be employed requires a continuous relaxation solution at

each node of the algorithm, we can either employ the Ben-Tal and Nemerovski ap-

proximation of the p-order conic constraint or the gradient approximation in order to

reduce the MIpOCP problem to a linear programming problem. As was stated be-

fore, the algorithm that will be used to solve our MIpOCP problems will be a mixture

of the Branch-and-Bound Algorithm developed by Vielma, Ahmed, and Nemhauser

(2008) in conjunction with the polyhedral approximation developed by Ben-Tal and

Nemirovski (2001b).

5.3.1 Ben-Tal Nemerovski’s Lifted Polyhedral Approx-
imation

After the reformulation of the MIpOCP problem as a MISOCP problem, one

possible approximation that we can use is its ”lifted” polyhedral approximation. This



www.manaraa.com

92

is done by replacing each of the corresponding second order cones in the MISOCP with

its approximation developed by Ben-Tal and Nemirovski (2001b) (MILPPBN). This

approximation is particularly effective because it allows for a compact and elegant

approximation to the p-cone problem.

5.3.2 Gradient Approximation

As before, in order to implement the branch-and-bound algorithm we must

be able to obtain a continuous relaxation solution at each node of the algorithm.

In order to create the linear programming relaxation of the p-order conic program-

ming problem, we employ our gradient approximation as it was defined in Chapter 3

(MILPPGA). Since the relaxation is used to help with the pruning process for the

branch-and-bound algorithm, a tight approximation is not needed.

5.4 Branch-and-Bound Algorithm for MIpOCP

As was stated before, the algorithm that will be used to solve our MIpOCP

problems will be an adaptation of the branch-and-bound algorithm developed by

Vielma, Ahmed, and Nemhauser (2008) in conjunction with our uniform gradient

polyhedral approximation. This is the natural choice since we are interested in finding

solutions for cones of ration order.

5.4.1 Pseudo Code for Branch-and-Bound Algorithm
For MIpOCP problem

The branch-and-bound algorithm that was developed by Vielma, Ahmed, and

Nemhauser (2008) was designed for the case p = 2. It is this algorithm that we have

adapted to the case of rational p. In order to take advantage of the branch-and-bound
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algorithm for rational p, we use our uniform gradient polyhedral approximation so

that we can construct the MILPP for any cone of rational order. Thus, we use the

MILPPGA in our branch-and-bound algorithm.

1. Set global upper bound UB:= +∞

2. Set nodes l0i := −∞, u0
i := +∞, ∀i ∈ {1, · · · , n}

3. Set LB0 = −∞

4. Set node list N := {(l0, u0,LB0)}

5. while N 6= ∅ do

6. Select and remove node (lk, uk,LBk) ∈ N

7. Initialize and solve the master problem MILPPGA (lk, uk):

max c>x + d>y

s. t. Dx + Ey ≤ f

Qx + Ty + Su ≤ 0

H(3)
m


A(i)x + B(i)y + C(i)u + e(i)

a(i)>x + b(i)>y + h(i)>u + e
(i)
0

v(i)

 ≥ 0, i ∈ Ir,s

x ∈ Rn, y ∈ Zm, u ∈ Rν , v ∈ Rκm

8. if MILPPGA (lk, uk) is feasible and OBJMISOCP < UB then

9. Let (x̂k, ŷk, ŵk) be the optimal solution of MILPPGA (lk, uk);

10. if ŷk ∈ Z then
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11. Solve MISOCP(x∗, y∗, w∗)

12. if MISOCP(x∗, y∗, w∗) is feasible and OBJMISOCP < UB then

13. UB := OBJMISOCP

14. end

15. if lk 6= uk and OBJMISOCP < UB then

16. Solve MISOCP(lk, uk)

17. if MISOCP(lk, uk) is feasible and OBJMISOCP < UB then

18. Let (x̄k, ȳk, w̄k) be the optimal solution of MISOCP(lk, uk)

19. if ȳk ∈ Z then

20. UB := OBJMISOCP

21. else

22. Pick i0 in {i ∈ {1, · · · , n}: x̄ki /∈ Z}

23. Let li = lki , ui = uki ∀i ∈ {1, · · · , n}\{i0}

24. Let ui0 = bx̄ki0c, li0 = bx̄ki0c+ 1

25. N := N ∪ {(lk, u,OBJMISOCP), (l, uk,OBJMISOCP)}

26. end

27. end

28. end
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29. else

30. Pick i0 in {i ∈ {1, · · · , n}: x̂ki /∈ Z}

31. Let li = lki , ui = uki ∀i ∈ {1, · · · , n}\{i0}

32. Let ui0 = bx̂ki0c, li0 = bx̂ki0c+ 1

33. N := N ∪ {(lk, u,OBJMILPPGA), (l, uk,OBJMILPPGA)}

34. end

35. end

36. Remove every node (lk, uk,UBk) such that UB ≤ LBk

37. end

In order for the branch-and-bound algorithm to be effective, it must be shown

that it will terminate in a finite number of steps and that it will terminate with the

optimal solution to the mixed integer nonlinear programming problem. Vielma et al.

(2008), showed that the following proposition holds:

Proposition 9. For any polyhedral relaxation (MILPP) of the nonlinear program-

ming problem using a bounded polyhedron H
(3)
m , the lifted linear programming branch-

and-bound algorithm above terminates with lower bound equal to the optimal objective

value of the mixed integer nonlinear programming problem.

Proof. The arguments of Vielma et al. (2008) carry over to our case practically with-

out modifications. (See Vielma, Ahmed, and Nemhauser (2008), page 441)
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5.5 Case Studies: Portfolio Optimization With
Integrality And p-order Constrains

In this section we discuss the computational efficiency of the developed branch-

and-bound algorithm for solving the p-order conic programming problem with inte-

grality constraints (MIpOCP). We will be comparing the MISOCP (5.2) reformulation

of the problem with the branch-and-bound algorithm that was developed in Chapter

5. The developed branch-and-bound algorithm will be tested for efficiency with re-

spect to solution time based on the size of the scenario set. Also of interest are the

optimal portfolios that the algorithm will yield.

As before, we will later consider methodological aspects of the coherent and

deviation measures that involve higher moments of loss distributions, such as HMCR,

SMCR, HMD and SMD measures (see Chapter 1). We will be looking at how the risk

measures based on higher moments of tail loss perform when compared to each other

and to more conventional risk measures such as the CVaR, and the Mean-Variance

models.

5.6 Computational Performance of Mixed In-
teger p-Order Conic Programming Branch-
and-Bound Algorithms

In this section we conduct numerical comparisons of the approaches discussed

above to solving problems of type (5.1). An application of the branch-and-bound

method for MIpOCP (5.1) will be demonstrated on a portfolio optimization problem

with cardinality constraints. Cardinality constrained portfolio allocation problems

typically arise in situations when no more than k assets are allowed to be in the

portfolio, or, equivalently, each asset is not allowed to exceed a certain fraction of the
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portfolio value. In the case when no more than k assets are allowed in the portfolio, the

cardinality-constrained portfolio optimization problem corresponding to the problem

(4.1) considered in Chapter 4 can be written by introducing new binary decision

variables z:

min
x, z

R(−r>x) (5.4a)

s. t. e>x = 1 (5.4b)

Er>x ≥ r0 (5.4c)

e>z ≤ k (5.4d)

0 ≤ x ≤ z (5.4e)

z ∈ {0, 1}n (5.4f)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)>

is the random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The

risk measure R(X) in (5.4a) can be taken to be HMCR, SMCR, etc., of the nega-

tive portfolio return, −r>x. Constraint (5.4b) is the budget constraint while (5.4d)

together with (5.4b) ensure that all of the available funds are invested. Constraint

(5.4c) imposes a minimal required level r0 of expected return of the resulting portfo-

lio. Obviously, the meaning of variables z is zi = 1 if asset i is present in the portfolio,

and zi = 0 otherwise.

With the risk measure R(X) replaced with the HMCRp,α(X) measure, the

portfolio selection problem for our case study is transformed into a mixed integer
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linear programming problem with a single p-order conic constraint (5.5e)

min η +
J−

1
p

1− α
t (5.5a)

s. t.
n∑
i=1

xi = 1, (5.5b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (5.5c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (5.5d)

t ≥ (wp1 + · · ·+ wpJ)1/p, (5.5e)
n∑
i=1

zi ≤ k (5.5f)

xi ≥ 0 i = 1, · · · , n, (5.5g)

wj ≥ 0 j = 1, · · · , J (5.5h)

5.6.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at computation time comparisons,

for scenario generations we used 10-day historical returns over J = 27, · · · , 210 overlap-

ping periods, calculated using daily closing prices from October 30, 1998 to January

18, 2006. The particular sizes of the scenario set has been chosen to accommodate

the linear approximation techniques in problem (5.1), and the sizes of the considered

scenario sets were limited only by availability of the data. From this set of S&P500

stocks, we selected n = 50 instruments by picking those with the highest value of
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kurtosis of biweekly returns, calculated over a specific period.

5.7 Computational Time Comparisons

In this section we present the computational efficiency, as measured by the av-

erage running time, of the developed algorithm for solving MIpOCP problems on

the example of the portfolio optimization problem with integrality and p-order conic

constraint (5.5). We compare the solution time of the branch-and-bound algorithm

with MILPPGA as the continuous linear relaxation that is solved at each node of the

branch-and-bound tree and the second order conic programming (SOCP) reformula-

tion. For the branch-and-bound with gradient approximation and SOCP reformula-

tion, the value of the parameter p in (5.5) varied as p =, 3, 4, 5. The confidence level

α, number of instruments in the portfolio, k, and minimum required expected return

have been fixed at α = 0.9, k = 5 and r0 = 0.5% respectively for all algorithms.

A total of 10 instances of problem (5.5) corresponding to 10 bi-weekly rebal-

ancing periods from December, 2002 to January 2006 have been solved for each im-

plementation and each scenario size.

The computer that was used to perform the scenario runs was a Dell XPS

with a Dual Core Pentium processor and 2GB of RAM. The machine was running

Windows XP with CPLEX 10.0.0. The ILOG Concert Technology implementation

of the CPA algorithm utilized the CPLEX linear programming solver, and the SOCP

implementation used CPLEX Barrier solver. The BN and GA implementations were

done using AMPL. The accuracy of the polyhedral approximations were chosen at

ε < 10−5 that is consistent with the standard CPLEX computation accuracy.
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p=3 p=4 p=5

J MIpOCP MISOCP MIpOCP MISOCP MIpOCP MISOCP

128 2.7 86.8 2.8 83.3 2.5 113.1

256 3.8 88.0 3.8 251.9 3.8 325.6

512 32.7 2114.5 22.3 1613.5 23.8 2483.0

1024 9.2 717.0 5.0 664.6 5.5 831.8

Table 5.1: Average running times (in seconds) for the
MIpOCP with Branch-and-Bound and SOCP reformulation
of problem (5.5) with p = 3, 4, 5, and α = 0.9,r0 = 0.05%.

5.7.1 Computational Results

The main conclusion of this computational study is that the developed branch-

and-bound algorithm as applied with the uniform gradient approximation of the

pOCP problem consistently outperforms the corresponding interior-point algorithm

based on the “exact” SOCP reformulation of the problem.

We believe that the following factors can be contributing to the observed differ-

ences in efficiencies of the polyhedral approximation/cutting plane procedure and the

SOCP-based solution approach. First, the reasons for relatively poor performance of

the SOCP-base algorithms may include the fact that, in general, most current SOCP

solvers do not perform as well on instances of SOCP problems with a large num-

ber of quadratic conic constrains, as compared to problems with a few (but possibly

high-dimensional) cones. Secondly, the inferior computational results may be due to

possible performance limitations of the CPLEX Barrier solver. Again, we plan to

verify these findings by implementing the SOCP reformulations of pOCP problems

using the more advanced MOSEK interior-point solver.
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Figure 5.1: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 3.

Figure 5.2: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 4.
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Figure 5.3: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 5.

5.8 Conclusions

In this chapter we developed the branch-and-bound algorithm for solving the

mixed integer p-order conic programming problem and conducted numerical experi-

ments so as to determine the computational efficiency of the developed methods for

solving MIpOCP problems on the example of a portfolio optimization problem with

integrality constraints and p-order constraints of small to medium dimensionality.

The main conclusion of this case study is that the proposed approach based on the

branch-and-bound algorithm turned out to be quite efficient.

In addition, we note that the difference in the solution times for the branch-

and-bound algorithm and the SOCP reformulation became larger as parameter J

increases. This would be expected given the size in the problem, however, the major
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difference in time can be attributed to the handling of SOCP problems that contain

many second order cones of low dimensionality as opposed to one second order cone

of a high dimension.

Finally, we address the spike in the numerical data which we attribute to the

use of real life data. It is not guaranteed that the solution time will always increase

as the scenario size increases. Some problems are inherently more difficult to solve.

This spike in the numerical data was probably due to the problem having a hard time

meeting the requirement of having 5 instruments in the portfolio.
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CHAPTER 6

CASE STUDY: A COMPARATIVE ANALYSIS OF PORTFOLIO
REBALANCING STRATEGIES BASED ON HIGHER MOMENT

COHERENT RISK MEASURES

6.1 Introduction

In this chapter we will look at the performance of the risk measures base on

higher moments of loss when compared to other industry standard risk measures

such as CVaR and Mean-Variance. We will see that in the case of the given portfolio

optimization model, the HMCR risk measures consistently outperforms the other risk

measures.

We revisit the portfolio optimization problems that were considered earlier in

Chapter 4 and Chapter 5 to determine the effectiveness of the HMCR risk measure.

First we will consider the general portfolio optimization problem:

min
x, z

R(−r>x) (6.1a)

s. t. e>x = 1 (6.1b)

Er>x ≥ r0 (6.1c)

e>z ≤ k (6.1d)

0 ≤ x ≤ z (6.1e)

z ∈ {0, 1}n (6.1f)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)> is the

random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The risk

measure R(X) in (5.4a) will be taken to be HMCR, SMCR and CVaR, of the negative

portfolio return, −r>x. Constraint (6.1d) will be included when we consider the
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portfolio optimization problem with cardinality constraint. Obviously, the meaning

of variables z is zi = 1 if asset i is present in the portfolio, and zi = 0 otherwise.

With the risk measure R(X) replaced with the HMCR1,α(X) measure (CVaR),

the portfolio selection problem for our case study is transformed into a linear pro-

gramming problem:

min η +
J−1

1− α
t (6.2a)

s. t.
n∑
i=1

xi = 1, (6.2b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.2c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.2d)

t ≥ w1 + · · ·+ wJ , (6.2e)

xi ≥ 0 i = 1, · · · , n, (6.2f)

wj ≥ 0 j = 1, · · · , J (6.2g)
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With the risk measure R(X) replaced with the HMCR2,α(X) measure, and the

addition of the constraint η = E(X) (SMCR), the portfolio selection problem for our

case study is transformed into a linear programming problem with a single 2-order

conic constraint:

min η +
J−

1
2

1− α
t (6.3a)

s. t.
n∑
i=1

xi = 1, (6.3b)

η =
1

n

n∑
i=1

xi (6.3c)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.3d)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.3e)

t ≥ (w2
1 + · · ·+ w2

J)1/2, (6.3f)

xi ≥ 0 i = 1, · · · , n, (6.3g)

wj ≥ 0 j = 1, · · · , J (6.3h)
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With the risk measure R(X) replaced with the HMCR3,α(X) measure (HMCR3),

the portfolio selection problem for our case study is transformed into a linear pro-

gramming problem with a single 3-order conic constraint:

min η +
J−

1
3

1− α
t (6.4a)

s. t.
n∑
i=1

xi = 1, (6.4b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.4c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.4d)

t ≥ (w3
1 + · · ·+ w3

J)1/3, (6.4e)

xi ≥ 0 i = 1, · · · , n, (6.4f)

wj ≥ 0 j = 1, · · · , J (6.4g)
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With the risk measure R(X) replaced with the HMCR3,α(X) measure and the

inclusion of the cardinality constraint (HMCR3-Int), the portfolio selection problem

with cardinality constraint for our case study is transformed into a mixed integer

linear programming problem with a single 3-order conic constraint (6.5e)

min η +
J−

1
3

1− α
t (6.5a)

s. t.
n∑
i=1

xi = 1, (6.5b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.5c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.5d)

t ≥ (w3
1 + · · ·+ w3

J)1/3, (6.5e)
n∑
i=1

zi ≤ k (6.5f)

xi ≥ 0 i = 1, · · · , n, (6.5g)

wj ≥ 0 j = 1, · · · , J (6.5h)
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6.2 Out-of-Sample Simulation Case Studies

One of the primary goals of this research theme is to try and reflect a “true to

life” performance of the HMCR and related higher-order measures in risk management

applications. To this end, we will conduct the so-called out-of-sample experiments.

This method determines the merits of a constructed solution using the out-of-sample

data that have not been included in the scenario model that was used to generate the

solution. By using this method, the out-of-sample setup simulates a common situation

when the true realization of uncertainties are unknown to the decision-maker, and the

decision x must be made using the “known” (in-sample) data ω0, but the outcome

X(x, ω) of the decision will be evaluated using the “unknown-at-the-time”, or out-of-

sample data ω̂: X = X(x, ω̂).

We will employ the out-of-sample method to compare simulated historic per-

formances of several self-financing portfolio rebalancing strategies that will be based

on risk measures that involve higher moments of loss distributions,such as HMCR,

SMCR, and the corresponding deviation measures that have been presented in Chap-

ter 1, as well some of the industry standard risk measures such as CVaR and Mean-

Variance models. In addition, we will consider the effect of cardinality constraints as

described above on the efficiency of the corresponding trading strategies. The data

set for this case study will be updated to incorporate the most recent market reces-

sion, which is expected to make the results of this case study more interesting from

the practical risk management viewpoint.
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6.2.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at portfolio performance, for sce-

nario generations we used 10-day historical returns over J = 210 overlapping periods,

calculated using daily closing prices from October 30, 1998 to October 30, 2009. The

particular sizes of the scenario set has been chosen to accommodate the linear ap-

proximation techniques in problems (2.1) and (5.1). From this set of S&P500 stocks,

we selected n = 50 instruments by picking those with the highest value of kurtosis of

biweekly returns, calculated over a specific period. The experiments were conducted

with r0 = 0.5% and α = .9, r0 = 0.5% and α = .95, r0 = 1% and α = .9, r0 = 1% and

α = .95 and finally r0 = 1.3% and α = .9, the latter of which will be used to assess

the performance of a particulary agressive strategy.

6.2.2 Portfolio Performance

In all cases the clear winner is the HMCR3,α(·) as R(·) with cardinality con-

straint. In general we see that the portfolio based on the HMCR3,α(·) risk measure

dominates the SMCRα(·) and the CV aRα(·).

Interestingly, the portfolio optimization with cardinality constraint outperformed

all the other problem formulations (see figures 6.1 and 6.2). This can be attributed

to the inherent increase in risk, and thus increase in reward, that manifests with a

less diversified portfolio. We should note that as r0 increased, the branch-and-bound

algorithm became more unstable and required a more refined LP relaxation. If we

look at figures 6.3 and 6.4), we see that the cardinality constrained portfolio fell below
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Figure 6.1: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 0.5% and α = .9.

all the other problem formulations. This can be attributed to instances of the LP

being infeasible due to the increase in r0 from 0.5% to 1%. We see this in the areas of

the graph where the portfolio flatlines, meaning that there was no change from one

instance to the next due to a problem with infeasibility.

We also notice that with an increase in r0 the value of the portfolio increases in

the case of all the risk measures. However, as r0 increases, the portfolio values, based

on its particular risk measure, become harder to discern from each other. If we look

at a particularly aggressive strategy where r0 = 1.3% and α = .9 (see figure 6.5) we

see that the portfolio’s are almost identical.

6.3 Conclusions

In this chapter we conducted numerical experiments so as to determine the effec-

tiveness of the higher moment coherent risk measures as compared to other industry

standard risk measures. We see that in all cases the HMCR3 risk measure was able
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Figure 6.2: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 0.5% and α = .95.

Figure 6.3: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1% and α = .9.
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Figure 6.4: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1% and α = .95.

Figure 6.5: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1.3% and α = .9.
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to outperform the CVaR and SMCR risk measures. This is accentuated by our choice

of ”heavy tailed” stock data which takes advantage of risk measures that are based

on tail moments of loss distribution.

As it was noted earlier, the infeasibility of the MIpOCP problem lies with the

budget and initial expected return constraint. We saw that as the initial expected

return, r0, increased, the branch-and-bound problem had some feasibility issues. In

order to correct this, we would have to increase the accuracy of our approximation

in order to ensure that the problem has a feasible solution. If, however, there are no

feasibility issues, we saw that the HMCR3-Int problem formulation led to the best

performing portfolio. This can be attributed to the fact that limiting the portfolio to

fewer instruments effectively increases the risk and thus the reward for the portfolio.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The goal of this research was to develop an efficient algorithmic method for solv-

ing the p-order conic programming problem. This was motivated by the implementa-

tion of higher moment coherent risk measures in stochastic programming problems.

The mathematical representation of HMCR measures in stochastic programming led

to a linear programming problem with a p-order conic constraint. Given the presence

of a p-order conic constraint in a stochastic programming problem, it was beneficial

to consider a linear approximation to the p-order cone in order to reduce our pOCP

problem to a linear programming problem. One of the major justifications for seeking

such a representation was to take advantage of the “warm start” capabilities of linear

programming solvers, which allows for quicker solutions to multistage stochastic pro-

gramming problems. Motivated by the need to solve the pOCP problem efficiently,

we considered different approximations for the p-order cone to see if we could improve

the solution time. Also, given the importance of integrality in practical applications,

we also considered the mixed integer p-order conic programming problem (MIpOCP).

During the course of this endeavor, we showed that the pOCP problem can

be reformulated as a SOCP problem with O(J log r) second order cones. We also

saw that there existed an eloquent mathematical reformulation of the SOCP problem

using the “lifted” polyhedral approximation developed by Ben-Tal and Nemirovski

(2001b). Although the “lifted” polyhedral approximation is a very efficient linear

approximation with excellent approximation error, it was shown that the practical

merits of the approximation did not help with the solution time of SOCP problems.

It was shown that, despite the efficiency of the approximation, the current interior
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point SOCP solvers performed just as well due, in part, to the self-duality of the

second order cone. Another issues was the inability to extend the “lifted” polyhedral

approximation to values of p > 2.This led to the development of our uniform gradient

approximation.

The gradient approximation was shown to be a very good approximation if the

number of subdivisions were large enough. As the number of subdivisions increased,

so did the size of the resulting linear programming problem. This motivated the

development of a cutting plane algorithm to generate the constraints for the facets

of the linear approximation as needed. Given the special structure of the uniform

gradient approximation, we were able to generate the cuts in O(J) time. This meant

that, by exploiting this special structure, we could use a subdivision of any size while

the time to generate the cuts would remain constant.

Another aspect of the pOCP problem that was considered was the incorporation

of integrality constraints. This led to the development of another algorithm for the

mixed integer p-order conic programming problem (MIpOCP). The algorithm that

was developed was an adaptation of a branch-and-bound algorithm that Vielma,

Ahmed, and Nemhauser (2008) developed for solving mixed integer second order

conic programming problems (MISOCP). We employed our polyhedral approximation

to represent the mixed integer linear programming problem (MILPPGA) that was

used in the branch-and-bound algorithm. The MILPPGA is used for pruning in the

branch-and-bound algorithm and as such, a tight approximation is not needed. The

MISOCP reformulation was compared to the MIpOCP with branch-and-bound to

determine the efficiency of the algorithm.

The numerical experiments for the pOCP problem indicated that the cutting

plane algorithm offered an efficient alternative to solving the pOCP problem. This
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could be seen clearly in the large difference in the solution times in the portfolio

optimization case study. It was also noted that the solution times decreased as p→

∞. This was attributed to the fact that at p = ∞ the problem becomes a linear

programming problem and it is no longer an approximation but a reformulation. The

MIpOCP numerical experiments also showed a marked difference in solution time

between the MISOCP reformulation and the MIpOCP with branch-and-bound. This

could be attributed to the effectiveness of the branch-and-bound algorithm and its

ability to branch on integer solutions.

When comparing the portfolio performance for risk measures HMCR3,α(·),

SMCRα(·) and CV aRα(·) we saw that the HMCR3,α(·) risk measure dominated

the others most of the time. We also saw that integrality, along with HMCR3,α(·),

led to a less diversified portfolio, based on the number of stocks that we limited the

portfolio to, and this led to greater returns over the long run when compared to all

the other portfolios. The data was chosen to reflect the most up to date closing stock

price information that was available. It included the current economic meltdown in

order to see how the self-balancing scheme would work to correct itself. Based on the

data in Chapter 6, we see that the risk measures that are based on higher moments

of tail loss generally outperform the current industry standard CVaR and SMCR risk

measures. This was accentuated by our choice of data in which we used stocks from

the S&P 500 that had the highest kurtosis.

Overall, the algorithms that were developed showed marked improvements in

their solution time when compared with trying to solve the problem through direct

implementation. We also saw that the overall performance of the HMCR risk mea-

sure outperformed the SMCR and CVaR risk measures when dealing with the “heavy
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tailed” stock data. This can be attributed to the definition of the HMCR risk mea-

sure as a quantification of risk as tail moments of loss distribution. The underlying

methodology that was employed was to solve the problem in stages and exploit the

special structure that is inherent in the formulation of the pOCP problem.

It was our intention to incorporate the cutting plane algorithm, along with the

branch-and-bound algorithm, to develop an efficient MIpOCP solver. There were,

however, limitations in the CPLEX C++ API that did not allow us to employ the

cutting plane algorithm at each node of the branch-and-bound algorithm. It is our

intention to investigate this further to see if there are any other options to incorporate

this idea in the future.
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Ruszczyński, A. and Shapiro, A. (2006) “Optimization of Convex Risk Functions,”
Mathematics of Operations Research, 31 (3), 433–452.

Schied, A. and Follmer, H. (2002) “Robust preferences and convex measures of risk,”
39–56.

Sturm, J. F. (1998) “Using SeDuMi 1.0x, a MATLAB toolbox for optimization over
symmetric cones,” Manuscript .

Terlaky, T. (1985) “On lp Programming,” European Journal of Operational Research,
22 (1), 70–100.

Testuri, C. and Uryasev, S. (2003) “On Relation Between Expected Regret and Con-
ditional Value-at-Risk,” .



www.manaraa.com

122

van der Vlerk, M. H. (2003) “Integrated Chance Constraints in an ALM Model for
Pension Funds,” Working paper .

Vielma, J. P., Ahmed, S., and Nemhauser, G. L. (2008) “A Lifted Linear Program-
ming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs,”
INFORMS Journal on Computing , 20 (3), 438–450.

von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Be-
havior .

Xue, G. and Ye, Y. (2000) “An efficient algorithm for minimizing a sum of p-norms,”
SIAM Journal on Optimization, 10 (2), 551–579.


	Risk optimization with p-order conic constraints
	Recommended Citation

	tmp.1271941803.pdf.VPRMl

